Counting lattice points

Abstract For a locally compact second countable group G and a lattice subgroup Γ, we give an explicit quantitative solution of the lattice point counting problem in general domains in G, provided that G has finite upper local dimension, and the domains satisfy a basic regularity condition, the mean ergodic theorem for the action of G on G/Γ holds, with a rate of convergence. The error term we establish matches the best current result for balls in symmetric spaces of simple higher-rank Lie groups, but holds in much greater generality. A significant advantage of the ergodic theoretic approach we use is that the solution to the lattice point counting problem is uniform over families of lattice subgroups provided they admit a uniform spectral gap. In particular, the uniformity property holds for families of finite index subgroups satisfying a quantitative variant of property τ. We discuss a number of applications, including: counting lattice points in general domains in semisimple S-algebraic groups, counting rational points on group varieties with respect to a height function, and quantitative angular (or conical) equidistribution of lattice points in symmetric spaces and in affine symmetric varieties. We note that the mean ergodic theorems which we establish are based on spectral methods, including the spectral transfer principle and the Kunze–Stein phenomenon. We formulate and prove appropriate analogues of both of these results in the set-up of adele groups, and they constitute a necessary ingredient in our proof of quantitative results for counting rational points.

[1]  Morten S. Risager,et al.  Distribution of angles in hyperbolic lattices , 2008, 0803.1584.

[2]  Groupes de Schottky et comptage , 2005 .

[3]  Jian-Shu Li The Minimal Decay of Matrix Coefficients for Classical Groups , 1995 .

[4]  G. Heckman,et al.  Harmonic Analysis and Special Functions on Symmetric Spaces , 1995 .

[5]  A. Gorodnik,et al.  Rational Points on Homogeneous Varieties and Equidistribution of Adelic Periods , 2008, 0803.1996.

[6]  A. Murase A UNIFORMITY OF DISTRIBUTION OF {G_Q} IN {G_A} , 1983 .

[7]  A. Borel,et al.  Reductive groups over local fields , 1979 .

[8]  A. Good Local Analysis of Selberg's Trace Formula , 1983 .

[9]  P. Nicholls A lattice point problem in hyperbolic space. , 1983 .

[10]  W. Schmidt The density of integer points on homogeneous varieties , 1985 .

[11]  R. Howe On A Notion of Rank for Unitary Representations of the Classical Groups , 2010 .

[12]  Height zeta functions of equivariant compactifications of the Heisenberg group , 2002, math/0203093.

[13]  A. Borel,et al.  Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups , 1999 .

[14]  Allan G. Silberger,et al.  Introduction to Harmonic Analysis on Reductive P-adic Groups. , 1979 .

[15]  A SYMBOLIC PROOF OF A THEOREM OF MARGULIS ON GEODESIC ARCS ON NEGATIVELY CURVED MANIFOLDS , 1995 .

[16]  Orbits of discrete subgroups on a symmetric space and the Furstenberg boundary , 2004, math/0405515.

[17]  N. Wallach,et al.  Resolvent and lattice points on symmetric spaces of strictly negative curvature , 1999 .

[18]  A. Eskin,et al.  Unipotent flows and counting lattice points on homogeneous varieties , 1996 .

[19]  A. Gorodnik,et al.  Strong wavefront lemma and counting lattice points in sectors , 2007, 0708.3188.

[20]  On the distribution of points of bounded height on equivariant compactifications of vector groups , 2000, math/0005015.

[21]  G. Margulis,et al.  Logarithm laws for flows on homogeneous spaces , 1998, math/9812088.

[22]  Martin N. Huxley,et al.  On the distribution of Farey fractions and hyperbolic lattice points , 2001, Period. Math. Hung..

[23]  Hee Oh,et al.  Uniform pointwise bounds for matrix coefficients of unitary representations and applications to Kazhdan constants , 2002 .

[24]  A. Nevo Exponential volume growth, maximal functions on symmetric spaces, and ergodic theorems for semi-simple Lie groups , 2005, Ergodic Theory and Dynamical Systems.

[25]  Some irreducible unitary representations of G(K) for a simple algebraic group G over an algebraic number field K , 2002 .

[26]  R. Phillips,et al.  The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces , 1982 .

[27]  Yuri Tschinkel,et al.  Rational Points of Bounded Height on Compactifications of Anisotropic Tori , 1994 .

[28]  P. Sarnak Diophantine Problems and Linear Groups , 1990 .

[29]  C. McMullen,et al.  Mixing, counting, and equidistribution in Lie groups , 1993 .

[30]  C. Moore Decomposition of unitary representations de ned by a discrete subgroup of nilpotent groups , 1965 .

[31]  G. Margulis Certain measures associated with U-flows on compact manifolds , 1970 .

[32]  N. Wallach,et al.  Limit Formulas for Multiplicities in L 2 (Γ\G) II. The Tempered Spectrum , 1979 .

[33]  E. Hlawka Über Integrale auf konvexen Körpern I , 1950 .

[34]  P. Sarnak,et al.  Prime and almost prime integral points on principal homogeneous spaces , 2009, 0902.0692.

[35]  P. Sarnak,et al.  Strong spectral gaps for compact quotients of products of PSL(2,R) , 2008, 0808.2368.

[36]  A. Borel,et al.  LAPLACIAN AND THE DISCRETE SPECTRUM OF AN ARITHMETIC GROUP , 1983 .

[37]  F. Maucourant Homogeneous asymptotic limits of Haar measures of semisimple linear groups and their lattices , 2005 .

[38]  Y. Benoist,et al.  Effective equidistribution of S-integral points on symmetric varieties , 2007, 0706.1621.

[39]  Henry H. Kim Functoriality for the exterior square of ₄ and the symmetric fourth of ₂ , 2003 .

[40]  Y. Tschinkel,et al.  Rational Points on Compactifications of Semi-Simple Groups of Rank 1 , 2006, math/0602236.

[41]  Rational points on compactifications of semi-simple groups , 2006, math/0602236.

[42]  Henry H. Kim,et al.  FUNCTORIALITY FOR THE EXTERIOR SQUARE OF GL4 AND THE SYMMETRIC FOURTH OF GL2 , 2003 .

[43]  P. Sarnak,et al.  Density of integer points on affine homogeneous varieties , 1993 .

[44]  Lizhen Ji,et al.  Compactifications of Symmetric Spaces , 1998 .

[45]  A. Murase On the uniform distribution property of certain linear algebraic groups , 1980 .

[46]  A. Nevo Spectral transfer and pointwise ergodic theorems for semi-simple Kazhdan groups , 1998 .

[47]  A. Eskin,et al.  UPPER BOUNDS AND ASYMPTOTICS IN A QUANTITATIVE VERSION OF THE OPPENHEIM CONJECTURE , 1998 .

[48]  Jian-Shu Li,et al.  On the decay of matrix coefficients for exceptional groups , 1996 .

[49]  A. Gorodnik,et al.  Manin's conjecture on rational points of bounded height and adelic mixing , 2006 .

[50]  A. Gorodnik,et al.  The Ergodic Theory of Lattice Subgroups , 2006, math/0605596.

[51]  S. Lalley Renewal theorems in symbolic dynamics, with applications to geodesic flows, noneuclidean tessellations and their fractal limits , 1989 .

[52]  Integral points on symmetric varieties and Satake compatifications , 2006, math/0610497.

[53]  C. Roettger Counting invertible matrices and uniform distribution , 2005 .

[54]  A. Nevo Pointwise ergodic theorems for radial averages on simple Lie groups II , 1994 .

[55]  B. Blackadar The regular representation of restricted direct product groups , 1977 .

[56]  A. Borel,et al.  Homomorphismes "abstraits" de groupes algébriques simples , 1973 .

[57]  R. Howe,et al.  Asymptotic properties of unitary representations , 1979 .

[58]  H. Huber Über eine neue Klasse automorpher Funktionen und ein Gitterpunktproblem in der hyperbolischen Ebene. I. , 1956 .

[59]  U. Haagerup,et al.  Almost L2 matrix coefficients. , 1988 .

[60]  H. Bartels Nichteuklidische Gitterpunktprobleme und Gleichverteilung in linearen algebraischen Gruppen , 1982 .

[61]  M. Cowling The Kunze-Stein Phenomenon , 1976 .

[62]  DISTRIBUTION OF ANGLES BETWEEN GEODESIC RAYS ASSOCIATED WITH HYPERBOLIC LATTICE POINTS , 2006, math/0608078.

[63]  A. Selberg Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series , 1956 .

[64]  N. Wallach,et al.  The resolvent of the Laplacian on locally symmetric spaces , 1992 .

[65]  H. Schlichtkrull Hyperfunctions and harmonic analysis on symmetric spaces , 1984 .

[66]  N. Wallach,et al.  Limit Formulas for Multiplicities in L 2 (Γ\G) , 1978 .

[67]  Amos Nevo,et al.  Chapter 13 - Pointwise Ergodic Theorems for Actions of Groups , 2006 .

[68]  Peter Sarnak,et al.  Bounds for multiplicities of automorphic representations , 1991 .

[69]  G. A. Margulis,et al.  Applications of ergodic theory to the investigation of manifolds of negative curvature , 1969 .

[70]  Ramanujan duals and automorphic spectrum , 1992, math/9204229.

[71]  Richard Sharp,et al.  On Some Aspects of the Theory of Anosov Systems: With a Survey by Richard Sharp: Periodic Orbits of Hyperbolic Flows , 2004 .

[72]  Richard Sharp SECTOR ESTIMATES FOR KLEINIAN GROUPS , 2003 .

[73]  Alexander Gorodnik,et al.  Distribution of lattice orbits on homogeneous varieties , 2004 .

[74]  P. Sarnak,et al.  Ramanujan duals II , 1991 .

[75]  P. Sarnak,et al.  Spectral gap for products of $\PSL(2,\bbR)$ , 2008 .

[76]  Y. Tschinkel,et al.  Manin's conjecture for toric varieties , 1995, alg-geom/9510014.

[77]  L. Clozel Démonstration de la conjecture τ , 2003 .

[78]  C. Herz On the Number of Lattice Points in a Convex Set , 1962 .

[79]  P. Günther Gitterpunktprobleme in symmetrischen Riemannschen Räumen vom Rang 1 , 1980 .

[80]  S. J. Patterson,et al.  A lattice-point problem in hyperbolic space , 1975 .