The Magnetic Fields of Classical T Tauri Stars

We report new magnetic field measurements for 14 classical T Tauri stars (CTTSs). We combine these data with one previous field determination in order to compare our observed field strengths with the field strengths predicted by magnetospheric accretion models. We use literature data on the stellar mass, radius, rotation period, and disk accretion rate to predict the field strength that should be present on each of our stars according to these magnetospheric accretion models. We show that our measured field values do not correlate with the field strengths predicted by simple magnetospheric accretion theory. We also use our field strength measurements and literature X-ray luminosity data to test a recent relationship expressing X-ray luminosity as a function of surface magnetic flux derived from various solar feature and main-sequence star measurements. We find that the T Tauri stars we have observed have weaker than expected X-ray emission by over an order of magnitude on average using this relationship. We suggest the cause for this is actually a result of the very strong fields on these stars, which decreases the efficiency with which gas motions in the photosphere can tangle magnetic flux tubes in the corona.

[1]  L. Hartmann,et al.  Emission-Line Diagnostics of T Tauri Magnetospheric Accretion. II. Improved Model Tests and Insights into Accretion Physics , 2001 .

[2]  R. Pudritz,et al.  The spin of accreting stars: dependence on magnetic coupling to the disc , 2004, astro-ph/0409701.

[3]  Alan T. Tokunaga,et al.  CSHELL: a high spectral resolution 1-5-μm cryogenic echelle spectrograph for the IRTF , 1993, Defense, Security, and Sensing.

[4]  H. Spruit,et al.  Convective instability of thin flux tubes , 1979 .

[5]  J. Valenti,et al.  Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs , 2005 .

[6]  William H. Press,et al.  Numerical recipes , 1990 .

[7]  L. Wallace,et al.  Medium-Resolution Spectra of Normal Stars in the K Band , 1997 .

[8]  S. Fabrika,et al.  Possible variability of the magnetic field of T Tau , 2004 .

[9]  S. Matt,et al.  Accretion-powered Stellar Winds as a Solution to the Stellar Angular Momentum Problem , 2005, astro-ph/0510060.

[10]  L. Hartmann,et al.  Magnetospheric Accretion Models for the Hydrogen Emission Lines of T Tauri Stars , 1998 .

[11]  E. Feigelson,et al.  High-Energy Processes in Young Stellar Objects , 1999 .

[12]  G. Basri,et al.  The Spectral Variability of the Classical T Tauri Star DR Tauri , 2001 .

[13]  R. Kurucz,et al.  Convective Intensification of Magnetic Flux Tubes in Stellar Photospheres , 2002, astro-ph/0201026.

[14]  I. Roxburgh,et al.  On the generation of the large-scale and turbulent magnetic fields in solar-type stars , 1993 .

[15]  S. Saar Recent measurements of stellar magnetic fields , 1996 .

[16]  S. Lamzin,et al.  Analysis of magnetic field measurements for T Tau , 2005 .

[17]  J. Valenti,et al.  Detection of Strong Magnetic Fields on M Dwarfs , 1995 .

[18]  L. Wallace,et al.  An atlas of a dark sunspot umbral spectrum from 1970 to 8640 cm(-1) (1.16 to 5.1 [microns]) , 1992 .

[19]  J. Valenti,et al.  Spectral Synthesis of TiO Lines , 1998 .

[20]  S. Saar Magnetic Fields on Solar-Like Stars: The First Decade , 1990 .

[21]  M. Camenzind Magnetized Disk-Winds and the Origin of Bipolar Outflows. , 1990 .

[22]  K. Shibata,et al.  X-Ray Flares and Mass Outflows Driven by Magnetic Interaction between a Protostar and Its Surrounding Disk , 1996, astro-ph/9606157.

[23]  G. Marcy,et al.  Limits on the Magnetic Flux of a Pre-Main Sequence Star , 1992 .

[24]  J. Valenti,et al.  T Tauri stars in blue , 1993 .

[25]  J. Valenti,et al.  An IUE Atlas of Pre-Main-Sequence Stars. II. Far-Ultraviolet Accretion Diagnostics in T Tauri Stars , 2000 .

[26]  J. Linsky,et al.  The photospheric magnetic field of the dM3.5e flare star AD Leonis , 1985 .

[27]  R. Winglee,et al.  Jets from Accreting Magnetic Young Stellar Objects. I. Comparison of Observations and High-Resolution Simulation Results , 1999 .

[28]  G. Wallerstein,et al.  Cool stars, stellar systems, and the sun : Sixth Cambridge Workshop , 1990 .

[29]  A. Boss,et al.  Protostars and Planets VI , 2000 .

[30]  Does Disk Locking Solve the Stellar Angular Momentum Problem , 2004, astro-ph/0403635.

[31]  New Tests of Magnetospheric Accretion in T Tauri Stars , 2002, astro-ph/0205190.

[32]  D. F. Gray Observations of spectral line asymmetries and convective velocities in F, G and K stars. , 1982 .

[33]  Testing the reality of strong magnetic fields on T Tauri stars: The naked T Tauri star Hubble 4 , 2004, astro-ph/0409268.

[34]  J. Stone,et al.  Magnetohydrodynamic Simulations of Stellar Magnetosphere-Accretion Disk Interaction , 1997 .

[35]  K. Stassun,et al.  X-Ray Properties of Pre-Main-Sequence Stars in the Orion Nebula Cluster with Known Rotation Periods , 2004, astro-ph/0403159.

[36]  A. Koenigl Disk accretion onto magnetic T Tauri stars , 1991 .

[37]  S. Sciortino,et al.  Time evolution of X-ray coronal activity in PMS stars; a possible relation with the evolution of accretion disks , 2003, astro-ph/0302329.

[38]  L. Hillenbrand,et al.  Disk Accretion in the 10 Myr Old T Tauri Stars TW Hydrae and Hen 3-600A , 2000, The Astrophysical journal.

[39]  C. Tinney The Bottom of the Main Sequence — And Beyond , 1995 .

[40]  R. Tayler Magnetic activity in pre-main-sequence stars , 1987 .

[41]  Donald N. B. Hall,et al.  Design for a 1--5-um cryogenic echelle spectrograph for the NASA IRTF , 1990, Astronomical Telescopes and Instrumentation.

[42]  X-RAYS IN THE ORION NEBULA CLUSTER: CONSTRAINTS ON THE ORIGINS OF MAGNETIC ACTIVITY IN PRE-MAIN-SEQUENCE STARS , 2002, astro-ph/0211049.

[43]  J. Ferreira,et al.  Reconnection X‐winds: spin‐down of low‐mass protostars , 2000 .

[44]  P. Ghosh,et al.  Accretion by rotating magnetic neutron stars. II. Radial and vertical structure of the transition zone in disk accretion. , 1979 .

[45]  G. Basri,et al.  Hamilton echelle spectra of young stars. I: Optical veiling , 1990 .

[46]  P. Hauschildt M (sub)Dwarf Model Atmospheres: The Next Generation , 1995 .

[47]  O. Regev,et al.  Photometric Observations of YY Orionis: New Insight Into the Accretion Process , 1996 .

[48]  B. Krauskopf,et al.  Proc of SPIE , 2003 .

[49]  J. Valenti,et al.  Infrared Zeeman Analysis of epsilon Eridani , 1995 .

[50]  Keivan G. Stassun,et al.  The Rotation Period Distribution of Pre-Main-Sequence Stars in and around the Orion Nebula , 1999 .

[51]  E. Ostriker,et al.  Magnetocentrifugally Driven Flows from Young Stars and Disks. IV. The Accretion Funnel and Dead Zone , 1995 .

[52]  B. Durney,et al.  On the angular momentum loss of late-type stars , 1977 .

[53]  J. Valenti,et al.  The Large-Scale Axisymmetric Magnetic Topology of a Very-Low-Mass Fully Convective Star , 2006, Science.

[54]  T Tauri stellar magnetic fields: He i measurements , 2005, astro-ph/0501445.

[55]  L. Hartmann,et al.  Calcium II infrared triplet line models in classical T Tauri stars , 2006, 0712.2971.

[56]  M. F. Skrutskie,et al.  Near-Infrared Photometric Monitoring of Young Stellar Objects , 1996 .

[57]  A. V. Koldoba,et al.  THREE-DIMENSIONAL SIMULATIONS OF DISK ACCRETION TO AN INCLINED DIPOLE. II. HOT SPOTS AND VARIABILITY , 2004, astro-ph/0404496.

[58]  L. Hartmann,et al.  Additional measurements of pre-main-sequence stellar rotation , 1989 .

[59]  S. Saar Improved Methods for the Measurement and Analysis of Stellar Magnetic Fields , 1988 .

[60]  P. Demarque,et al.  The theoretical calculation of the Rossby number and the `non-local' convective overturn time for pre-main sequence and early post-main sequence stars , 1995, astro-ph/9507096.

[61]  J. Stenflo Solar photosphere: Structure, convection and magnetic fields , 1989 .

[62]  L. Hartmann,et al.  Rotational and radial velocities of T Tauri stars , 1986 .

[63]  J. Valenti,et al.  Measuring the Magnetic Field of the Classical T Tauri Star TW Hydrae , 2005, astro-ph/0509549.

[64]  J. Gosling,et al.  The relationship between large-scale solar magnetic field evolution and coronal mass ejections , 1998 .

[65]  G. G. Valyavin,et al.  Possible detection of a magnetic field in T Tauri , 2003, astro-ph/0302026.

[66]  N. Schulz,et al.  Evidence for Accretion: High-Resolution X-Ray Spectroscopy of the Classical T Tauri Star TW Hydrae , 2001, astro-ph/0111049.

[67]  E. Feigelson,et al.  The Origin of T Tauri X-Ray Emission: New Insights from the Chandra Orion Ultradeep Project , 2005, astro-ph/0506526.

[68]  J. Valenti,et al.  Spectropolarimetry of Magnetospheric Accretion on the Classical T Tauri Star BP Tauri , 1998 .

[69]  A. Harris,et al.  On the simultaneous optical and near-infrared variability of pre-main sequence stars , 2002 .

[70]  J. Valenti,et al.  New Infrared Veiling Measurements and Constraints on Accretion Disk Models for Classical T Tauri Stars , 2001 .

[71]  K. Wood,et al.  X-ray emission from T Tauri stars , 2006, astro-ph/0601213.

[72]  K. Keil,et al.  Protostars and Planets V , 2007 .

[73]  S. Saar New Infrared Measurements of Magnetic Fields on Cool Stars , 1994 .

[74]  H. L. Johnson,et al.  Astronomical Measurements in the Infrared , 1966 .

[75]  Robert Winglee,et al.  Time-dependent Accretion by Magnetic Young Stellar Objects as a Launching Mechanism for Stellar Jets , 1997 .

[76]  G. Basri,et al.  The Line Profile Variability of SU Aurigae , 1995 .

[77]  N. Calvet,et al.  The Structure and Emission of the Accretion Shock in T Tauri Stars , 1998 .

[78]  P. Hartigan,et al.  Disk Accretion and Mass Loss from Young Stars , 1995 .

[79]  Austin,et al.  Observational Constraints on the Formation and Evolution of Binary Stars , 2001, astro-ph/0103098.

[80]  Jr. Robinson Magnetic field measurements on stellar sources - A new method , 1980 .

[81]  E. Recillas,et al.  The Hot SPOT in DR Tauri , 1994 .

[82]  P. Hartigan,et al.  Spectroscopic evidence for magnetospheric accretion in classical T Tauri stars , 1994 .

[83]  A. Pevtsov,et al.  The Relationship Between X-Ray Radiance and Magnetic Flux , 2003 .

[84]  S. Solanki,et al.  Three dimensional structure of a regular sunspot from the inversion of IR Stokes profiles , 2003 .

[85]  C. Bertout,et al.  Accretion Disks around T Tauri Stars , 1988 .

[86]  J. Valenti,et al.  Observations of Magnetic Fields on T Tauri Stars , 2004 .

[87]  S. Baliunas,et al.  Rotation, convection, and magnetic activity in lower main-sequence stars , 1984 .

[88]  W. Dobler,et al.  Magnetic Field Generation in Fully Convective Rotating Spheres , 2006 .

[89]  Christopher D. Koresko,et al.  Measuring the Magnetic Field on the Classical T Tauri Star BP Tauri , 1999 .

[90]  L. Hartmann,et al.  Disk Accretion Rates for T Tauri Stars , 1998 .

[91]  Mass accretion on to T Tauri stars , 2006, astro-ph/0606682.

[92]  D. Padgett Atmospheric Parameters and Iron Abundances of Low-Mass Pre-Main-Sequence Stars in Nearby Star Formation Regions , 1996 .

[93]  D. Moss The survival of fossil magnetic fields during pre-main sequence evolution , 2003 .

[94]  S. Edwards,et al.  Helium Emission from Classical T Tauri Stars: Dual Origin in Magnetospheric Infall and Hot Wind , 2001 .

[95]  Large-scale alpha^2-dynamo in low-mass stars and brown dwarfs , 2005, astro-ph/0510075.

[96]  S. Sciortino,et al.  Einstein Observations of T Tauri Stars in Taurus-Auriga. I. Properties of X-Ray Emission , 1995 .