Comprehensive Investigation of Statistical Effects in Nitride Memories—Part II: Scaling Analysis and Impact on Device Performance

This paper presents a scaling analysis of the statistical distribution of the threshold voltage shift (ΔVT) obtained by electron storage in nitride memories, considering both its average and standard deviation. For fixed density of trapped charge, the average ΔVT decreases as a consequence of fringing fields, not predictable by any 1-D simulation approach. Moreover, the distribution statistical dispersion increases with technology scaling due to a more sensitive percolative substrate conduction in the presence of atomistic doping and 3-D electrostatics. The impact of these effects on device performance is then highlighted, showing that the accuracy of the staircase programming algorithm can be reduced further from the limitation given by the electron injection statistics during programming. The impact of electron storage in the nitride on random telegraph noise instabilities is also investigated, showing that, despite single cell behavior may be modified, negligible effects result at the statistical level.

[1]  K. Otsuga,et al.  The Impact of Random Telegraph Signals on the Scaling of Multilevel Flash Memories , 2006, 2006 Symposium on VLSI Circuits, 2006. Digest of Technical Papers..

[2]  Guido Torelli,et al.  Technological and design constraints for multilevel flash memories , 1996, Proceedings of Third International Conference on Electronics, Circuits, and Systems.

[3]  A. Visconti,et al.  Random Telegraph Noise Effect on the Programmed Threshold-Voltage Distribution of Flash Memories , 2009, IEEE Electron Device Letters.

[4]  A. Visconti,et al.  Comprehensive Analysis of Random Telegraph Noise Instability and Its Scaling in Deca–Nanometer Flash Memories , 2009, IEEE Transactions on Electron Devices.

[5]  K. Sonoda,et al.  Discrete Dopant Effects on Statistical Variation of Random Telegraph Signal Magnitude , 2007, IEEE Transactions on Electron Devices.

[6]  A. Asenov,et al.  Simulation Study of Individual and Combined Sources of Intrinsic Parameter Fluctuations in Conventional Nano-MOSFETs , 2006, IEEE Transactions on Electron Devices.

[7]  Chih-Yuan Lu,et al.  A Novel Gate-Sensing and Channel-Sensing Transient Analysis Method for Real-Time Monitoring of Charge Vertical Location in Sonos-Type Devices and its Applications in Reliability Studies , 2007, 2007 IEEE International Reliability Physics Symposium Proceedings. 45th Annual.

[8]  A.L. Lacaita,et al.  Statistical Model for Random Telegraph Noise in Flash Memories , 2008, IEEE Transactions on Electron Devices.

[9]  Chih-Yuan Lu,et al.  study of incremental step pulse programming (ISPP) and STI edge effect of BE-SONOS NAND Flash , 2008, 2008 IEEE International Reliability Physics Symposium.

[10]  Piero Olivo,et al.  Constant charge erasing scheme for flash memories , 2002 .

[11]  Nobuyuki Sano,et al.  On discrete random dopant modeling in drift-diffusion simulations: physical meaning of 'atomistic' dopants , 2002, Microelectron. Reliab..

[12]  A. Asenov,et al.  Statistical aspects of reliability in bulk MOSFETs with multiple defect states and random discrete dopants , 2008, Microelectron. Reliab..

[13]  Chih-Yuan Lu,et al.  Reliability and Processing Effects of Bandgap-Engineered SONOS (BE-SONOS) Flash Memory and Study of the Gate-Stack Scaling Capability , 2008, IEEE Transactions on Device and Materials Reliability.

[14]  Kinam Kim,et al.  A novel SONOS structure of SiO/sub 2//SiN/Al/sub 2/O/sub 3/ with TaN metal gate for multi-giga bit flash memories , 2003, IEEE International Electron Devices Meeting 2003.

[15]  Hyoungsub Kim,et al.  Effects of Si3N4 Thickness on the Electrical Properties of Oxide-Nitride-Oxide Tunneling Dielectrics , 2008 .

[16]  Christian Monzio Compagnoni,et al.  Investigation of the Random Telegraph Noise Instability in Scaled Flash Memory Arrays , 2008 .

[17]  Tetsuo Endoh,et al.  Fast and accurate programming method for multi-level NAND EEPROMs , 1995, 1995 Symposium on VLSI Technology. Digest of Technical Papers.

[18]  Tahone Yang,et al.  Understanding STI edge fringing field effect on the scaling of charge-trapping (CT) NAND Flash and modeling of incremental step pulse programming (ISPP) , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[19]  Ki-Tae Park,et al.  Charge Trapping Memory Cell of TANOS (Si-Oxide-SiN-Al2O3-TaN) Structure Compatible to Conventional NAND Flash Memory , 2006, 2006 21st IEEE Non-Volatile Semiconductor Memory Workshop.

[20]  Chih-Yuan Lu,et al.  Read Current Instability Arising from Random Telegraph Noise in Localized Storage, Multi-Level SONOS Flash Memory , 2006, 2006 International Electron Devices Meeting.

[21]  Kinam Kim,et al.  Multi-Level NAND Flash Memory with 63 nm-Node TANOS (Si-Oxide-SiN-Al2O3-TaN) Cell Structure , 2006, 2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers..

[22]  Dongchan Kim,et al.  A novel NAND-type MONOS memory using 63nm process technology for multi-gigabit flash EEPROMs , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[23]  T. Mine,et al.  Anomalous Electron Storage Decrease in MONOS' Nitride Layers Thinner Than 4 nm , 2008, IEEE Electron Device Letters.

[24]  Chih-Yuan Lu,et al.  Reliability of barrier engineered charge trapping devices for sub-30nm NAND flash , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[25]  D. Schmitt-Landsiedel,et al.  Novel model for cell - system interaction (MCSI) in NAND Flash , 2008, 2008 IEEE International Electron Devices Meeting.

[26]  A. Mauri,et al.  Physical Modeling for Programming of TANOS Memories in the Fowler–Nordheim Regime , 2009, IEEE Transactions on Electron Devices.

[27]  C.M. Compagnoni,et al.  Analytical Model for the Electron-Injection Statistics During Programming of Nanoscale nand Flash Memories , 2008, IEEE Transactions on Electron Devices.

[28]  Christian Monzio Compagnoni,et al.  Comprehensive Investigation of Statistical Effects in Nitride Memories—Part I: Physics-Based Modeling , 2010, IEEE Transactions on Electron Devices.

[29]  Andrew R. Brown,et al.  RTS amplitudes in decananometer MOSFETs: 3-D simulation study , 2003 .

[30]  M. Schulz,et al.  Random telegraph signal: An atomic probe of the local current in field-effect transistors , 1998 .

[31]  Kinam Kim,et al.  Highly Manufacturable 32Gb Multi -- Level NAND Flash Memory with 0.0098 μm2 Cell Size using TANOS(Si - Oxide - Al2O3 - TaN) Cell Technology , 2006, 2006 International Electron Devices Meeting.

[32]  Sanghun Jeon,et al.  Self Aligned Trap-Shallow Trench Isolation Scheme for the Reliability of TANOS (TaN/AlO/SiN/Oxide/Si) NAND Flash Memory , 2007, 2007 22nd IEEE Non-Volatile Semiconductor Memory Workshop.

[33]  J. Bu,et al.  Design considerations in scaled SONOS nonvolatile memory devices , 2001 .

[34]  A. Visconti,et al.  Ultimate Accuracy for the nand Flash Program Algorithm Due to the Electron Injection Statistics , 2008, IEEE Transactions on Electron Devices.

[35]  Chih-Yuan Lu,et al.  Program charge effect on random telegraph noise amplitude and its device structural dependence in SONOS flash memory , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[36]  A. Visconti,et al.  Physical modeling of single-trap RTS statistical distribution in flash memories , 2008, 2008 IEEE International Reliability Physics Symposium.

[37]  T. Chan,et al.  A true single-transistor oxide-nitride-oxide EEPROM device , 1987, IEEE Electron Device Letters.