TAp63 suppresses metastasis through coordinate regulation of Dicer and miRNAs

[1]  Keara M. Lane,et al.  Dicer1 functions as a haploinsufficient tumor suppressor. , 2009, Genes & development.

[2]  T. Jacks,et al.  p63 and p73 Transcriptionally Regulate Genes Involved in DNA Repair , 2009, PLoS genetics.

[3]  Stefano Volinia,et al.  MicroRNA expression profiling of human metastatic cancers identifies cancer gene targets , 2009, The Journal of pathology.

[4]  Alexander Pertsemlidis,et al.  Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression. , 2009, Genes & development.

[5]  E. Flores,et al.  Rescue of key features of the p63‐null epithelial phenotype by inactivation of Ink4a and Arf , 2009, The EMBO journal.

[6]  K. Tsai,et al.  TAp63 prevents premature aging by promoting adult stem cell maintenance. , 2009, Cell stem cell.

[7]  Jan-Fang Cheng,et al.  Dicer, Drosha, and outcomes in patients with ovarian cancer. , 2008, The New England journal of medicine.

[8]  M. Zavolan,et al.  Molecular characterization of human Argonaute-containing ribonucleoprotein complexes and their bound target mRNAs. , 2008, RNA.

[9]  J. Lawrence,et al.  Loss of miRNA biogenesis induces p19Arf-p53 signaling and senescence in primary cells , 2008, The Journal of cell biology.

[10]  R. Weinberg,et al.  Tumour invasion and metastasis initiated by microRNA-10b in breast cancer , 2007, Nature.

[11]  L. Lim,et al.  A microRNA component of the p53 tumour suppressor network , 2007, Nature.

[12]  T. Golub,et al.  Impaired microRNA processing enhances cellular transformation and tumorigenesis , 2007, Nature Genetics.

[13]  E. Flores The Roles of p63 in Cancer , 2007, Cell cycle.

[14]  A. Bradley,et al.  p63 heterozygous mutant mice are not prone to spontaneous or chemically induced tumors. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[15]  G. Pruneri,et al.  The transactivating isoforms of p63 are overexpressed in high‐grade follicular lymphomas independent of the occurrence of p63 gene amplification , 2005, The Journal of pathology.

[16]  H. Horvitz,et al.  MicroRNA expression profiles classify human cancers , 2005, Nature.

[17]  A. Yang,et al.  Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor suppressor functions for the p53 family. , 2005, Cancer cell.

[18]  T. Jacks,et al.  Mutant p53 Gain of Function in Two Mouse Models of Li-Fraumeni Syndrome , 2004, Cell.

[19]  L. Strong,et al.  Gain of Function of a p53 Hot Spot Mutation in a Mouse Model of Li-Fraumeni Syndrome , 2004, Cell.

[20]  R. Weber,et al.  Differential Methylation Status of Tumor-Associated Genes in Head and Neck Squamous Carcinoma , 2004, Clinical Cancer Research.

[21]  Yong-Koo Park,et al.  Low Expression of P63 and P73 in Osteosarcoma , 2004, Tumori.

[22]  C. Cordon-Cardo,et al.  Loss of p63 expression is associated with tumor progression in bladder cancer. , 2002, The American journal of pathology.

[23]  K. Tsai,et al.  p63 and p73 are required for p53-dependent apoptosis in response to DNA damage , 2002, Nature.

[24]  A. Yang,et al.  On the shoulders of giants: p63, p73 and the rise of p53. , 2002, Trends in genetics : TIG.

[25]  T. Jacks,et al.  Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. , 2001, Genes & development.

[26]  S. Chi,et al.  Frequent alteration of p63 expression in human primary bladder carcinomas. , 2000, Cancer research.

[27]  J. Jen,et al.  AIS is an oncogene amplified in squamous cell carcinoma. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[28]  A. Yang,et al.  p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. , 1998, Molecular cell.

[29]  R. Weinberg,et al.  Tumor spectrum analysis in p53-mutant mice , 1994, Current Biology.