A predictive Bayesian approach to sequential time‐between‐events monitoring

[1]  James M. Lucas,et al.  Counted Data CUSUM's , 1985 .

[2]  Subhabrata Chakraborti,et al.  Bayesian Monitoring of Times Between Events: The Shewhart tr-Chart , 2017 .

[3]  Min Xie,et al.  Design of exponential control charts based on average time to signal using a sequential sampling scheme , 2015 .

[4]  R. Jarrett A note on the intervals between coal-mining disasters , 1979 .

[5]  Zhen He,et al.  Performance comparison for the CRL control charts with estimated parameters for high-quality processes , 2017 .

[6]  Ulrich Menzefricke,et al.  ON THE EVALUATION OF CONTROL CHART LIMITS BASED ON PREDICTIVE DISTRIBUTIONS , 2002 .

[7]  Ning Wang,et al.  The Effect of Parameter Estimation on Upper-sided Bernoulli Cumulative Sum Charts , 2013, Qual. Reliab. Eng. Int..

[8]  Fadel M. Megahed,et al.  Geometric Charts with Estimated Control Limits , 2013, Qual. Reliab. Eng. Int..

[9]  Rainer Göb,et al.  An Overview of Control Charts for High‐quality Processes , 2016, Qual. Reliab. Eng. Int..

[10]  Thong Ngee Goh,et al.  A control chart for the Gamma distribution as a model of time between events , 2007 .

[11]  Joel Smith,et al.  Control Charts Based on the Exponential Distribution: Adapting Runs Rules for the t Chart , 2013 .

[12]  Thong Ngee Goh,et al.  Design of exponential control charts using a sequential sampling scheme , 2006 .

[13]  Janet M. Twomey,et al.  A Sequential Bayesian Cumulative Conformance Count Approach to Deterioration Detection in High Yield Processes , 2012, Qual. Reliab. Eng. Int..

[14]  William H. Woodall,et al.  The Conditional In-Control Performance of Self-Starting Control Charts , 2015 .

[15]  George W. Sturm,et al.  An empirical bayes strategy for analysing manufacturing data in real time , 1991 .

[16]  Sofia Panagiotidou,et al.  A sequential monitoring Bayesian control scheme for attributes , 2018, Quality Technology & Quantitative Management.

[17]  P. Diaconis,et al.  Conjugate Priors for Exponential Families , 1979 .

[18]  William H. Woodall,et al.  The Difficulty in Designing Shewhart X̄ and X Control Charts with Estimated Parameters , 2015 .

[19]  Charles W. Champ,et al.  The Performance of Exponentially Weighted Moving Average Charts With Estimated Parameters , 2001, Technometrics.

[20]  N. Kumar,et al.  Improved Shewhart-Type Charts for Monitoring Times Between Events , 2017 .

[21]  Min Xie,et al.  Design of Gamma Charts Based on Average Time to Signal , 2016, Qual. Reliab. Eng. Int..

[22]  Kwok-Leung Tsui,et al.  Self-Starting Monitoring Scheme for Poisson Count Data With Varying Population Sizes , 2016, Technometrics.

[23]  Subhabrata Chakraborti,et al.  Phase II Shewhart‐type Control Charts for Monitoring Times Between Events and Effects of Parameter Estimation , 2016, Qual. Reliab. Eng. Int..

[24]  Steven A. Melnyk,et al.  Sufficient statistics process control : an empirical Bayes approach to process control , 1990 .

[25]  Lizanne Raubenheimer,et al.  Bayesian process control for the Phase II Shewart-type p-chart , 2016 .

[26]  Alta van der Merwe,et al.  Bayesian Control Chart for Nonconformities , 2015, Qual. Reliab. Eng. Int..

[27]  Sajid Ali,et al.  High quality process monitoring using a class of inter-arrival time distributions of the renewal process , 2016, Comput. Ind. Eng..

[28]  M. J. Bayarri,et al.  A Bayesian Sequential Look at u-Control Charts , 2005, Technometrics.

[29]  William H. Woodall,et al.  Another Look at the EWMA Control Chart with Estimated Parameters , 2015 .

[30]  Nirpeksh Kumar,et al.  Design and implementation of qth quantile‐unbiased tr‐chart for monitoring times between events , 2019, Qual. Reliab. Eng. Int..