An Essentially Oscillation-Free Discontinuous Galerkin Method for Hyperbolic Systems

[1]  Chi-Wang Shu,et al.  Bound-preserving modified exponential Runge-Kutta discontinuous Galerkin methods for scalar hyperbolic equations with stiff source terms , 2018, J. Comput. Phys..

[2]  Chi-Wang Shu,et al.  Numerical study on the convergence to steady state solutions of a new class of high order WENO schemes , 2017, J. Comput. Phys..

[3]  Chi-Wang Shu,et al.  Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws , 2017, J. Comput. Phys..

[4]  Xiangxiong Zhang,et al.  Maximum-Principle-Satisfying and Positivity-Preserving High Order Discontinuous Galerkin Schemes for Conservation Laws on Triangular Meshes , 2011, Journal of Scientific Computing.

[5]  Xiangxiong Zhang,et al.  On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes , 2010, J. Comput. Phys..

[6]  Xiangxiong Zhang,et al.  On maximum-principle-satisfying high order schemes for scalar conservation laws , 2010, J. Comput. Phys..

[7]  Chi-Wang Shu,et al.  Error Estimates to Smooth Solutions of Runge-Kutta Discontinuous Galerkin Method for Symmetrizable Systems of Conservation Laws , 2006, SIAM J. Numer. Anal..

[8]  Ralf Hartmann,et al.  Adaptive discontinuous Galerkin methods with shock‐capturing for the compressible Navier–Stokes equations , 2006 .

[9]  Chi-Wang Shu,et al.  Numerical Simulation of High Mach Number Astrophysical Jets with Radiative Cooling , 2005, J. Sci. Comput..

[10]  Chi-Wang Shu,et al.  The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .

[11]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[12]  Jay Casper,et al.  Finite-volume implementation of high-order essentially nonoscillatory schemes in two dimensions , 1992 .

[13]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .

[14]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[15]  ShuChi-Wang,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes, II , 1989 .

[16]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[17]  G. Sod A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .

[18]  P. Lax Weak solutions of nonlinear hyperbolic equations and their numerical computation , 1954 .

[19]  Siddhartha Mishra,et al.  Entropy stable shock capturing space–time discontinuous Galerkin schemes for systems of conservation laws , 2014, Numerische Mathematik.

[20]  Chi-Wang Shu,et al.  A simple weighted essentially nonoscillatory limiter for Runge-Kutta discontinuous Galerkin methods , 2013, J. Comput. Phys..

[21]  Erik Burman,et al.  Local Projection Stabilization for the Oseen Problem and its Interpretation as a Variational Multiscale Method , 2006, SIAM J. Numer. Anal..

[22]  C. Schulz-Rinne,et al.  Classification of the Riemann problem for two-dimensional gas dynamics , 1991 .

[23]  Chi-Wang Shu,et al.  The Runge-Kutta local projection $P^1$-discontinuous-Galerkin finite element method for scalar conservation laws , 1991, ESAIM: Mathematical Modelling and Numerical Analysis.