Bicyclic commutator quotients with one non-elementary component

For any number field K with non-elementary 3-class group Cl3(K) ≃ C3e × C3, e ≥ 2, the punctured capitulation type κ(K) of K in its unramified cyclic cubic extensions Li, 1 ≤ i ≤ 4, is an orbit under the action of S3 × S3. By means of Artin’s reciprocity law, the arithmetical invariant κ(K) is translated to the punctured transfer kernel type κ(G2) of the automorphism group G2 = Gal(F3(K)/K) of the second Hilbert 3-class field of K. A classification of finite 3-groups G with low order and bicyclic commutator quotient G/G′ ≃ C3e × C3, 2 ≤ e ≤ 6, according to the algebraic invariant κ(G), admits conclusions concerning the length of the Hilbert 3-class field tower F3 (K) of imaginary quadratic number fields K.

[1]  D. C. Mayer Transfers of metabelian p-groups , 2012, 1403.3896.

[2]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[3]  D. C. Mayer Periodic Bifurcations in Descendant Trees of Finite p-Groups , 2015, 1502.03390.

[4]  W. Bosma,et al.  HANDBOOK OF MAGMA FUNCTIONS , 2011 .

[5]  D. C. Mayer New number fields with known p-class tower , 2015, 1510.00565.

[6]  Charles R. Leedham-Green,et al.  On the Classification of Groups of Prime-Power Order by Coclass: the 3-Groups of Coclass 2 , 2013, Int. J. Algebra Comput..

[7]  E. Artin Idealklassen in oberkörpern und allgemeines reziprozitätsgesetz , 1929 .

[8]  N. Boston,et al.  Heuristics for p-class towers of imaginary quadratic fields , 2011, 1111.4679.

[9]  D. C. Mayer Artin transfer patterns on descendant trees of finite p-groups , 2015, 1511.07819.

[10]  O. Taussky A remark concerning Hilbert's Theorem 94. , 1969 .

[11]  A. Scholz,et al.  Die Hauptideale der kubischen Klassenkörper imaginär-quadratischer Zahlkörper: ihre rechnerische Bestimmung und ihr Einfluß auf den Klassenkörperturm. , 1934 .

[12]  M. F. Newman,et al.  Determination of groups of prime-power order , 1977 .

[13]  E. A. O'Brien,et al.  The p-Group Generation Algorithm , 1990, J. Symb. Comput..

[14]  Franz-Peter Heider,et al.  Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen. , 1982 .

[15]  The Capitulation Problem in Class Field Theory , 2012, 1205.0707.

[16]  M. Arrigoni On Schur σ—Groups , 1998 .

[17]  D. C. Mayer p-Capitulation over number fields with p-class rank two , 2016, 1605.03695.

[18]  E. Artin Beweis des allgemeinen Reziprozitätsgesetzes , 1927 .

[19]  George Havas,et al.  A computer aided classification of certain groups of prime power order , 1977, Bulletin of the Australian Mathematical Society.

[20]  Claus Fieker,et al.  Computing class fields via the Artin map , 2001, Math. Comput..