Nanorobot Movement: Challenges and Biologically inspired solutions

Nanorobotics is the technology of creating machines or robots of the size of few hundred nanometres and below consisting of components of nanoscale or molecular size. There is an all around development in nanotechnology towards realization of nanorobots in the last two decades. In the present work, the compilation of advancement in nanotechnology in context to nanorobots is done. The challenges and issues in movement of a nanorobot and innovations present in nature to overcome the difficulties in moving at nano-size regimes are discussed. The efficiency aspect in context to artificial nanorobot is also presented.

[1]  G. Parisi Brownian motion , 2005, Nature.

[2]  Marcus L. Roper,et al.  Microscopic artificial swimmers , 2005, Nature.

[3]  J. Tour,et al.  Directional control in thermally driven single-molecule nanocars. , 2005, Nano letters.

[4]  Nanofabrication Challenges for NEMS , 2006, 2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems.

[5]  Jeffrey S. Moore,et al.  Design and Synthesis of a “Molecular Turnstile” , 1995 .

[6]  Zettl,et al.  Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes , 2000, Science.

[7]  E. Gauger,et al.  Numerical study of a microscopic artificial swimmer. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  A S G Curtis Comment on "Nanorobotics control design: a collective behavior approach for medicine". , 2005, IEEE transactions on nanobioscience.

[9]  James A. Norris,et al.  An introduction to tribology. , 2008, Journal of surgical orthopaedic advances.

[10]  Fumihito Arai,et al.  Assembly of nanodevices with carbon nanotubes through nanorobotic manipulations , 2003, Proc. IEEE.

[11]  MunJu Kim,et al.  Hydrodynamic interactions between rotating helices. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  S. Quake,et al.  Microfluidics: Fluid physics at the nanoliter scale , 2005 .

[13]  Barney M. Berlin,et al.  Size , 1989, Encyclopedia of Evolutionary Psychological Science.

[14]  B.W. Podaima,et al.  Microscopic dynamics of cytobots , 2004, Canadian Conference on Electrical and Computer Engineering 2004 (IEEE Cat. No.04CH37513).

[15]  Richard A. Silva,et al.  Unidirectional rotary motion in a molecular system , 1999, Nature.

[16]  Philip G. Collins,et al.  Materials: Peeling and sharpening multiwall nanotubes , 2000, Nature.

[17]  Robert T Abraham,et al.  Guiding ATM to Broken DNA , 2005, Science.

[18]  H. Craighead,et al.  Powering an inorganic nanodevice with a biomolecular motor. , 2000, Science.

[19]  Aristides A. G. Requicha Nanorobots, NEMS, and nanoassembly , 2003 .

[20]  R. Freitas,et al.  Exploratory design in medical nanotechnology: a mechanical artificial red cell. , 1998, Artificial cells, blood substitutes, and immobilization biotechnology.

[21]  E. Purcell Life at Low Reynolds Number , 2008 .

[22]  F. Jülicher,et al.  Modeling molecular motors , 1997 .

[23]  C. Ho,et al.  Fluidics-the link between micro and nano sciences and technologies , 2001, Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090).

[24]  J. Higdon,et al.  A hydrodynamic analysis of flagellar propulsion , 1979, Journal of Fluid Mechanics.

[25]  Jeffrey S. Moore,et al.  Design and Synthesis of a “Molecular Turnstile”. , 1996 .

[26]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[27]  J. Joanny,et al.  Asters, vortices, and rotating spirals in active gels of polar filaments. , 2004, Physical review letters.

[28]  Bharat Bhushan,et al.  Scale effects in friction using strain gradient plasticity and dislocation-assisted sliding (microslip) , 2003 .

[29]  Metin Sitti,et al.  Towards Hybrid Swimming Microrobots: Bacteria Assisted Propulsion of Polystyrene Beads , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.

[30]  Subrahmanyan Chandrasekhar,et al.  Brownian Motion, Dynamical Friction, and Stellar Dynamics , 1949 .

[31]  Takahiro Harada,et al.  Mode switching of an optical motor , 2002 .

[32]  B. Bhushan,et al.  Scale Effect in Dry Friction During Multiple-Asperity Contact , 2005 .

[33]  T. Hogg,et al.  Nanorobotics System Simulation in 3D Workspaces with Low Reynolds Number , 2006, 2006 IEEE International Symposium on MicroNanoMechanical and Human Science.

[34]  Vincenzo Balzani,et al.  Operating molecular elevators. , 2006, Journal of the American Chemical Society.

[35]  M. Sitti,et al.  Micro- and nano-scale robotics , 2004, Proceedings of the 2004 American Control Conference.

[36]  Thomas R Powers,et al.  Role of body rotation in bacterial flagellar bundling. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  Chun-Yen Chang The highlights in the nano world , 2003 .

[38]  Patricia McGuiggan,et al.  Liquid to solidlike transitions of molecularly thin films under shear , 1990 .

[39]  T. Aida,et al.  Mechanical twisting of a guest by a photoresponsive host , 2006, Nature.

[40]  J. F. Stoddart,et al.  A chemically and electrochemically switchable molecular shuttle , 1994, Nature.

[41]  J. Fraser Stoddart,et al.  A Molecular Elevator , 2004, Science.

[42]  Takuzo Aida,et al.  Light-driven open-close motion of chiral molecular scissors. , 2003, Journal of the American Chemical Society.

[43]  A. H. Jayatissa,et al.  Recent advances in nanotechnology: key issues & potential problem areas , 2003, 2003 Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003..

[44]  B. Feringa,et al.  Light-driven molecular switches and motors , 2002 .

[45]  M. Roukes Nanoelectromechanical Systems , 2000, cond-mat/0008187.

[46]  B. Feringa,et al.  In control of motion: from molecular switches to molecular motors. , 2001, Accounts of chemical research.

[47]  F. P. Bowden,et al.  The Friction and Lubrication of Solids , 1964 .

[48]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[49]  Mel Siegel Smart sensors and small robots , 2001, IMTC 2001. Proceedings of the 18th IEEE Instrumentation and Measurement Technology Conference. Rediscovering Measurement in the Age of Informatics (Cat. No.01CH 37188).

[50]  B. Bhushan,et al.  Introduction to Tribology , 2002 .

[51]  R. Astumian,et al.  Making molecules into motors. , 2001, Scientific American.

[52]  R. Chau Silicon nanotechnologies and emerging non-silicon nanoelectronics , 2006, 2006 8th International Conference on Solid-State and Integrated Circuit Technology Proceedings.

[53]  Jonathan Clayden,et al.  Concerted Rotation in a Tertiary Aromatic Amide: Towards a Simple Molecular Gear , 1998 .

[54]  Wesley R Browne,et al.  Making molecular machines work , 2006, Nature nanotechnology.

[55]  J. Israelachvili Intermolecular and surface forces , 1985 .

[56]  Motion of an adhesive gel in a swelling gradient: a mechanism for cell locomotion. , 2003, Physical review letters.

[57]  Raymond E. Goldstein,et al.  FLEXIVE AND PROPULSIVE DYNAMICS OF ELASTICA AT LOW REYNOLDS NUMBER , 1997, cond-mat/9707346.

[58]  N. N. Sharma,et al.  Brownian motion model of nanoparticle considering nonrigidity of matter-a systems modeling approach , 2005, IEEE Transactions on Nanotechnology.

[59]  Ben L. Feringa,et al.  Dynamic Control and Amplification of Molecular Chirality by Circular Polarized Light , 1996, Science.

[60]  N. N. Sharma,et al.  Non-Brownian motion of nanoparticles: an impact process model , 2004, IEEE Transactions on Nanotechnology.

[61]  Dennis Bray,et al.  Cell Movements: From Molecules to Motility , 1992 .

[62]  F. Paolucci,et al.  Photoinduction of Fast, Reversible Translational Motion in a Hydrogen-Bonded Molecular Shuttle , 2001, Science.

[63]  Jean-Pierre Sauvage,et al.  Transition Metal-Containing Rotaxanes and Catenanes in Motion: Toward Molecular Machines and Motors , 1998 .

[64]  Francesco Zerbetto,et al.  Synthetic molecular motors and mechanical machines. , 2007, Angewandte Chemie.

[65]  Tad Hogg,et al.  Nanorobot Communication Techniques: A Comprehensive Tutorial , 2006, 2006 9th International Conference on Control, Automation, Robotics and Vision.

[66]  A. Cavalcanti,et al.  Nanorobotics control design: a collective behavior approach for medicine , 2005, IEEE Transactions on NanoBioscience.

[67]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[68]  Joachim,et al.  Rotation of a single molecule within a supramolecular bearing , 1998, Science.

[69]  N. N. Sharma Radiation model for nanoparticle: extension of classical Brownian motion concepts , 2008 .

[70]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[71]  I.G. Neizvestny Trends in Development of Modern Silicon Nanoelectronics , 2006, International Workshops and Tutorials on Electron Devices and Materials.

[72]  N. Harada,et al.  Light-driven monodirectional molecular rotor , 2022 .

[73]  Kim,et al.  Nanotube nanotweezers , 1999, Science.

[74]  T. Ross Kelly,et al.  In Search of Molecular Ratchets , 1997 .

[75]  D. Eigler,et al.  Atomic and Molecular Manipulation with the Scanning Tunneling Microscope , 1991, Science.