Kinetics and Modeling of l-6-[18F]Fluoro-DOPA in Human Positron Emission Tomographic Studies

[1]  M E Phelps,et al.  L-6-[18F]Fluoro-DOPA Metabolism in Monkeys and Humans: Biochemical Parameters for the Formulation of Tracer Kinetic Models with Positron Emission Tomography , 1991, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[2]  J C Mazziotta,et al.  Modelling approach for separating blood time-activity curves in positron emission tomographic studies. , 1991, Physics in medicine and biology.

[3]  J. Hoffman,et al.  6-[18F]Fluoro-l-DOPA metabolism in MPTP-treated monkeys: assessment of tracer methodologies for positron emission tomography , 1991, Brain Research.

[4]  A. Gjedde,et al.  Blood—Brain Transfer and Metabolism of 6-[18F]Fluoro-L-DOPA in Rat , 1990, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[5]  A. Luxen,et al.  Comparative in vivo metabolism of 6-[18F]fluoro-L-dopa and [3H]L-dopa in rats. , 1990, Biochemical pharmacology.

[6]  R. Kass Nonlinear Regression Analysis and its Applications , 1990 .

[7]  David J. Brooks,et al.  A Two-Compartment Description and Kinetic Procedure for Measuring Regional Cerebral [11C]Nomifensine Uptake Using Positron Emission Tomography , 1990, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[8]  Scott T. Grafton,et al.  Transplantation of human fetal dopamine cells for Parkinson's disease. Results at 1 year. , 1990, Archives of neurology.

[9]  C D Marsden,et al.  Grafts of fetal dopamine neurons survive and improve motor function in Parkinson's disease. , 1990, Science.

[10]  G. Antoni,et al.  Striatal kinetics of [11C]‐(+)‐nomifensine and 6‐[18F]fluoro‐L‐dopa in Parkinson's disease measured with positron emission tomography , 1990, Acta neurologica Scandinavica.

[11]  M E Phelps,et al.  Remote, semiautomated production of 6-[18F]fluoro-L-dopa for human studies with PET. , 1990, International journal of radiation applications and instrumentation. Part A, Applied radiation and isotopes.

[12]  A. Luxen,et al.  The effects of carbidopa on the metabolism of 6-[18F]fluoro-L-dopa in rats, monkeys and humans. , 1990, Life sciences.

[13]  C. Patlak,et al.  Nigrostriatal function in humans studied with positron emission tomography , 1989, Annals of neurology.

[14]  D. Calne,et al.  PET Studies of Parkinsonian Patients Treated with Autologous Adrenal Implants , 1989, Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques.

[15]  K. L. Leenders,et al.  Unilateral MPTP lesion in a rhesus monkey: effects on the striatal dopaminergic system measured in vivo with PET using various novel tracers , 1988, Brain Research.

[16]  J. Barrio,et al.  In vivo assessment of neurotransmitter biochemistry in humans. , 1988, Annual review of pharmacology and toxicology.

[17]  C Nahmias,et al.  Cerebral Metabolism of 6–[18F]Fluoro‐l‐3,4‐Dihydroxyphenylalanine in the Primate , 1987, Journal of neurochemistry.

[18]  M E Phelps,et al.  Quantitation in Positron Emission Tomography: 8. Effects of Nonlinear Parameter Estimation on Functional Images , 1987, Journal of computer assisted tomography.

[19]  E. Mcgeer,et al.  The Metabolism of [18F]6‐Fluoro‐l‐3,4‐Dihydroxyphenylalanine in the Hooded Rat , 1987, Journal of neurochemistry.

[20]  C. Nahmias,et al.  Determination and visualization of damage to striatal dopaminergic terminals in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism by [18F]-labeled 6-fluoro-L-dopa and positron emission tomography. , 1987, Advances in neurology.

[21]  M. Bergstrom,et al.  Positron emission tomography in Parkinson's disease: glucose and DOPA metabolism. , 1987, Advances in neurology.

[22]  P. Cumming,et al.  Determination of plasma [18F]-6-fluorodopa during positron emission tomography: elimination and metabolism in carbidopa treated subjects. , 1986, Life sciences.

[23]  Richard S. J. Frackowiak,et al.  Inhibition of L‐{18F}fluorodopa uptake into human brain by amino acids demonstrated by positron emission tomography , 1986, Annals of neurology.

[24]  T Jones,et al.  Brain dopamine metabolism in patients with Parkinson's disease measured with positron emission tomography. , 1986, Journal of neurology, neurosurgery, and psychiatry.

[25]  M E Phelps,et al.  Model Dependency and Estimation Reliability in Measurement of Cerebral Oxygen Utilization Rate with Oxygen-15 and Dynamic Positron Emission Tomography , 1986, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[26]  C Nahmias,et al.  [18F]fluoro-L-dopa for the in vivo study of intracerebral dopamine. , 1986, International journal of radiation applications and instrumentation. Part A, Applied radiation and isotopes.

[27]  Michael J. Adam,et al.  Positron emission tomography after MPTP: observations relating to the cause of Parkinson's disease , 1985, Nature.

[28]  A. Lang,et al.  Striatal dopamine distribution in Parkinsonian patients during life , 1985, Journal of the Neurological Sciences.

[29]  J J DiStefano,et al.  Multiexponential, multicompartmental, and noncompartmental modeling. II. Data analysis and statistical considerations. , 1984, The American journal of physiology.

[30]  C. Nahmias,et al.  Central Dopaminergic Pathways in Hemiparkinsonism Examined by Positron Emission Tomography , 1984, Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques.

[31]  M. Horne,et al.  The cerebral metabolism of L-dihydroxyphenylalanine. An autoradiographic and biochemical study. , 1984, Pharmacology.

[32]  C. Nahmias,et al.  Striatal dopamine metabolism in living monkeys examined by positron emission tomography , 1983, Brain Research.

[33]  C. Nahmias,et al.  Dopamine visualized in the basal ganglia of living man , 1983, Nature.

[34]  C S Patlak,et al.  Graphical Evaluation of Blood-to-Brain Transfer Constants from Multiple-Time Uptake Data , 1983, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[35]  Richard E. Carson,et al.  BLD: A Software System for Physiological Data Handling and Model Analysis , 1981 .

[36]  J C Mazziotta,et al.  Quantitation in Positron Emission Computed Tomography: 5. Physical–Anatomical Effects , 1981, Journal of computer assisted tomography.

[37]  S. Fahn,et al.  L-DOPA (L-3,4-dihydroxyphenylalanine) uptake by human red blood cells. , 1981, Biochimica et biophysica acta.

[38]  R. Wurtman,et al.  The site of dopamine formation in rat striatum after L-dopa administration. , 1981, The Journal of pharmacology and experimental therapeutics.

[39]  Michael E. Phelps,et al.  Quantitation in Positron Emission Computed Tomography , 1980 .

[40]  C. Nahmias,et al.  Blood-brain barrier transport and cerebral utilization of dopa in living monkeys. , 1980, The American journal of physiology.

[41]  E. Hoffman,et al.  Quantitation in Positron Emission Computed Tomography: 1. Effect of Object Size , 1979, Journal of computer assisted tomography.

[42]  M E Phelps,et al.  Validation of tomographic measurement of cerebral blood volume with C-11-labeled carboxyhemoglobin. , 1979, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[43]  T. Pasik,et al.  The Internal Organization of the Neostriatum in Mammals , 1979 .

[44]  W H Oldendorf,et al.  Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection. , 1971, The American journal of physiology.