Human stereovision without localized image features

Many theories of human Stereovision are based on feature matching and the related correspondence problem. In this paper, we present psychophysical experiments indicating that localized image features such as Laplacian zerocrossings, intensity extrema, or centroids are not necessary for binocular depth perception. Smooth one-dimensional intensity profiles were combined into stereograms with mirror-symmetric half-images such that these localized image features were either absent or did not carry stereo information. In a discrimination task, subjects were asked to distinguish between stereograms differing only by an exchange of these half-images (ortho- vs. pseudoscopic stereograms). In a depth ordering task, subjects had to judge which of the two versions appeared in front. Subjects are able to solve both tasks even in the absence of the mentioned image features. The performance is compared to various possible stereo mechanisms. We conclude that localized image features and the correspondences between them are not necessary to perceive stereoscopic depth. One mechanism accounting for our data is correlation or mean square difference.

[1]  H. Wilson,et al.  Neural models of stereoscopic vision , 1991, Trends in Neurosciences.

[2]  H H Bülthoff,et al.  Integration of depth modules: stereo and shading. , 1988, Journal of the Optical Society of America. A, Optics and image science.

[3]  Joachim Rüdiger von der Heydt,et al.  Stereoskopische Wahrnehmung der Orientierungsdisparation , 1979 .

[4]  Hanspeter A. Mallot,et al.  Phase-based binocular vergence control and depth reconstruction using active vision , 1994 .

[5]  David B. Cooper,et al.  Toward a Model-Based Bayesian Theory for Estimating and Recognizing Parameterized 3-D Objects Using Two or More Images Taken from Different Positions , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  D. Weinshall Seeing “ghost” planes in stereo vision , 1991, Vision Research.

[7]  K. Nakayama,et al.  Real world occlusion constraints and binocular rivalry , 1990, Vision Research.

[8]  A Blake,et al.  Shape from specularities: computation and psychophysics. , 1991, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[9]  George J. Carman,et al.  Three-dimensional illusory contours and surfaces , 1992, Nature.

[10]  Heinrich H. Bülthoff,et al.  Bayesian Models for Seeing Shapes and Depth , 1990 .

[11]  M. Fahle,et al.  Perceived Depth Scales with Disparity Gradient , 1991, Perception.

[12]  Randolph Blake,et al.  Does contrast disparity alone generate stereopsis? , 1979, Vision Research.

[13]  R. Watt,et al.  A theory of the primitive spatial code in human vision , 1985, Vision Research.

[14]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[15]  L. Kaufman,et al.  Cognitive processes and performance , 1986 .

[16]  J. Krol,et al.  The Double-Nail Illusion: Experiments on Binocular Vision with Nails, Needles, and Pins , 1980, Perception.

[17]  J. G. Jenkins Gesetze des Sehens. , 1937 .

[18]  Alan L. Yuille,et al.  Scaling Theorems for Zero Crossings , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  O. Sabouraud [Space perception]. , 1978, Revue d'oto-neuro-ophtalmologie.

[20]  C. Schor,et al.  Binocular sensory fusion is limited by spatial resolution , 1984, Vision Research.

[21]  J G Daugman,et al.  Pattern and motion vision without Laplacian zero crossings. , 1988, Journal of the Optical Society of America. A, Optics and image science.

[22]  S. McKee,et al.  Stereoscopic acuity with defocused and spatially filtered retinal images , 1980 .

[23]  John E. W. Mayhew,et al.  Psychophysical and Computational Studies Towards a Theory of Human Stereopsis , 1981, Artif. Intell..

[24]  R. J. Watt,et al.  Intensity-response nonlinearities and the theory of edge localization , 1984, Vision Research.

[25]  Lei Liu,et al.  Quantitative stereoscopic depth without binocular correspondence , 1994, Nature.

[26]  Jake K. Aggarwal,et al.  Structure from stereo-a review , 1989, IEEE Trans. Syst. Man Cybern..

[27]  R. Blake,et al.  How Contrast Affects Stereoacuity , 1988, Perception.

[28]  Emanuele Trucco,et al.  Computer and Robot Vision , 1995 .

[29]  Jan J. Koenderink,et al.  Local structure of movement parallax of the plane , 1976 .

[30]  B. Rogers,et al.  Disparity curvature and the perception of three-dimensional surfaces , 1989, Nature.

[31]  B. Julesz Foundations of Cyclopean Perception , 1971 .

[32]  D Marr,et al.  Cooperative computation of stereo disparity. , 1976, Science.

[33]  Kenneth R. Boff,et al.  Sensory processes and perception , 1986 .

[34]  Rudolf Arnheim,et al.  Gesetze des Sehens , 1977 .

[35]  Gordon E. Legge,et al.  Stereopsis and contrast , 1989, Vision Research.

[36]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[37]  T. Lee,et al.  The resilience of social networks to changes in mobility and propinquity , 1980 .

[38]  L. Cormack,et al.  Interocular correlation, luminance contrast and cyclopean processing , 1991, Vision Research.

[39]  大野 義夫,et al.  Computer Graphics : Principles and Practice, 2nd edition, J.D. Foley, A.van Dam, S.K. Feiner, J.F. Hughes, Addison-Wesley, 1990 , 1991 .

[40]  Heinrich H. Bülthoff,et al.  Stereo Integration, Mean Field Theory and Psychophysics , 1990, ECCV.

[41]  Thomas Ertl,et al.  Computer Graphics - Principles and Practice, 3rd Edition , 2014 .

[42]  Hanspeter A. Mallot,et al.  Disparity-evoked vergence is directed towards average depth , 1995 .

[43]  M F Bradshaw,et al.  Vertical disparities, differential perspective and binocular stereopsis , 1993, Nature.

[44]  J Ninio,et al.  Random-Curve Stereograms: A Flexible Tool for the Study of Binocular Vision , 1981, Perception.

[45]  B. Rogers,et al.  Anisotropies in the perception of stereoscopic surfaces: The role of orientation disparity , 1993, Vision Research.

[46]  Heinrich H. Bülthoff,et al.  Integration of Stereo, Shading and Texture , 1990 .

[47]  C. Wheatstone XVIII. Contributions to the physiology of vision. —Part the first. On some remarkable, and hitherto unobserved, phenomena of binocular vision , 1962, Philosophical Transactions of the Royal Society of London.

[48]  John K. Tsotsos,et al.  Techniques for disparity measurement , 1991, CVGIP Image Underst..

[49]  S. McKee,et al.  The role of retinal correspondence in stereoscopic matching , 1988, Vision Research.

[50]  H. Mallot,et al.  Binocular vergence influences the assignment of stereo correspondences , 1990, Vision Research.

[51]  Wilson S. Geisler,et al.  Color as a source of information in the stereo correspondence process , 1990, Vision Research.

[52]  T. Poggio,et al.  A computational theory of human stereo vision , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[53]  Linda G. Shapiro,et al.  Computer and Robot Vision , 1991 .

[54]  D. Regan,et al.  Evidence for the existence of neural mechanisms selectively sensitive to the direction of movement in space , 1973, The Journal of physiology.

[55]  H. Bülthoff,et al.  Does the brain know the physics of specular reflection? , 1990, Nature.

[56]  J. R. Pomerantz,et al.  THEORETICAL APPROACHES TO PERCEPTUAL ORGANIZATION Simplicity and Likelihood Principles , 1986 .

[57]  D Marr,et al.  A computational theory of human stereo vision. , 1979, Proceedings of the Royal Society of London. Series B, Biological sciences.