Electrodeposited Superconducting Re on Flexible Substrates Using Aerosol Jet Printed Metal Seed Layers

Electrodeposition of superconducting Re on aerosol jet printed (AJP) metal seed layers on a flexible substrate is investigated. Silver and gold seed layers are printed using the “Nanojet” aerosol jet printer on Kapton films. Thermogravimetric analysis, stylus profilometer, and three-point bend test are performed to characterize the AJP metal seed layer on such flexible substrates. Electrodeposition of Re is successfully carried out on the Au seed layer and is characterized using various techniques, such as X-ray fluorescence spectroscopy, focused ion beam, scanning electron microscope, energy dispersive spectroscopy, X-ray diffraction, and four-point probe electrical measurements at cryogenic temperatures. The superconductivity of such a flexible Re stack is confirmed with an elevated critical temperature (Tc) of 6 K.

[1]  I. Drozdov,et al.  YBCO-on-Kapton: Material for High-Density Quantum Computer Interconnects With Ultra-Low Thermal Loss , 2021, IEEE Transactions on Applied Superconductivity.

[2]  Sunita Garhwal,et al.  State-of-the-Art Survey of Quantum Cryptography , 2021, Archives of Computational Methods in Engineering.

[3]  L. Tsui,et al.  High Resolution Aerosol Jet Printed Components with Electrodeposition-Enhanced Conductance , 2021 .

[4]  Avi Goldfarb,et al.  Commercial applications of quantum computing , 2021, EPJ Quantum Technology.

[5]  Nadra Guizani,et al.  Forthcoming applications of quantum computing: peeking into the future , 2020, IET Quantum Commun..

[6]  J. Teng,et al.  Printable two-dimensional superconducting monolayers , 2020, Nature Materials.

[7]  T. Oh,et al.  Grain growth and superconductivity of rhenium electrodeposited from water-in-salt electrolytes , 2020 .

[8]  Russell A. Harris,et al.  A review of aerosol jet printing—a non-traditional hybrid process for micro-manufacturing , 2019, The International Journal of Advanced Manufacturing Technology.

[9]  Nicolas P. D. Sawaya,et al.  Quantum Chemistry in the Age of Quantum Computing. , 2018, Chemical reviews.

[10]  Qiang Huang,et al.  Electrodeposition of Superconducting Rhenium with Water-in-Salt Electrolyte , 2018 .

[11]  Qiang Huang,et al.  Electrodeposition of rhenium with suppressed hydrogen evolution from water-in-salt electrolyte , 2018, Electrochemistry Communications.

[12]  Roman Orus,et al.  Quantum computing for finance: Overview and prospects , 2018, Reviews in Physics.

[13]  A. Wallraff,et al.  Engineering cryogenic setups for 100-qubit scale superconducting circuit systems , 2018, EPJ Quantum Technology.

[14]  B. Plourde,et al.  Enhanced superconducting transition temperature in electroplated rhenium , 2018, 1803.02029.

[15]  Yi Du,et al.  Nanodroplets for Stretchable Superconducting Circuits , 2016 .

[16]  George A. Hernandez,et al.  Flexible superconducting Nb transmission lines on thin film polyimide for quantum computing applications , 2016, 1606.04557.

[17]  L. Francis,et al.  Optimization of aerosol jet printing for high-resolution, high-aspect ratio silver lines. , 2013, ACS applied materials & interfaces.

[18]  Ben Wang,et al.  Conductivity enhancement of aerosol-jet printed electronics by using silver nanoparticles ink with carbon nanotubes , 2012 .

[19]  T. Moffat,et al.  Superconformal Electrodeposition for 3-Dimensional Interconnects , 2010 .

[20]  H. Akahoshi,et al.  Advanced trench filling process by selective copper electrodeposition for ultra fine printed wiring board fabrication , 2010, 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC).

[21]  D. R. Gabe,et al.  Residual stresses in electrodeposits of nickel and nickel–iron alloys , 1999 .

[22]  J. H. Wang,et al.  Superconducting Epitaxial (TlBi)0.9Sr1.6Ba0.4Ca2 Cu3Ag0.2Ox Film from an Electrodeposited Precursor. , 1999 .

[23]  J. H. Wang,et al.  Superconducting thallium oxide films by the electrodeposition method , 1998 .

[24]  R. H. Falk,et al.  THE INFLUENCE OF SPECIMEN TOPOGRAPHY ON X‐RAY MICROANALYSIS ELEMENT MAPPING , 1975 .

[25]  J. Hulm,et al.  Superconducting Properties of Rhenium, Ruthenium, and Osmium , 1957 .

[26]  J. Hulm Superconductivity of pure metallic rhenium , 1954 .

[27]  L. Romankiw,et al.  The Next Frontier: Electrodeposition for Solar Cell Fabrication , 2011 .

[28]  G. Palumbo,et al.  Electrical, Magnetic and Mechanical Properties of Nanocrystalline Nickel , 1993 .

[29]  B. Brox,et al.  The influence of surface topography on the x‐ray intensity in electron microprobe analysis (EDS/WDS) , 1987 .