The Theorems of Beth and Craig in Abstract Model Theory,iii: ∆-logics and Infinitary Logics Sh113

We give a general technique on how to produce counterexamples to Beth's definability (and weak definability) theorem. The method is then applied for various infinitary, cardinality quantifier logics and Δ-closure of such logics.

[1]  Saharon Shelah On the number of nonisomorphic models in LINFINITY , κ when κ is weakly compact , 1982, Notre Dame J. Formal Log..

[2]  S. Shelah Generalized quantifiers and compact logic , 1975 .

[3]  Saharon Shelah Two cardinal compactness , 1971 .

[4]  Saharon Shelah,et al.  Refuting ehrenfeucht conjecture on rigid models , 1976 .

[5]  Saharon Shelah On the possible number no(M)= the number of nonisomorphic models LINFINITY, λ-equivalent to M of power λ, for λ singular , 1985, Notre Dame J. Formal Log..

[6]  Saharon Shelah,et al.  Models with second order properties IV. A general method and eliminating diamonds , 1983, Ann. Pure Appl. Log..

[7]  Saharon Shelah,et al.  Infinite games and reduced products , 1981 .

[8]  Saharon Shelah A pair of nonisomorphic $\equiv_{\infty \lambda}$ models of power $\lambda$ for $\lambda$ singular with $\lambda_\omega=\lambda$. , 1984 .

[9]  Saharon Shelah,et al.  On the Elementary Equivalence of Automorphism Groups of Boolean Algebras; Downward Skolem Lowenheim Theorems and Compactness of Related Quantifiers , 1980, J. Symb. Log..

[10]  Saharon Shelah,et al.  Remarks in abstract model theory , 1985, Ann. Pure Appl. Log..

[11]  Saharon Shelah,et al.  There are reasonably nice logics , 1991, Journal of Symbolic Logic.

[12]  A. Hajnal,et al.  Partition relations for cardinal numbers , 1965 .

[13]  Saharon Shelah Models with second order properties I. Boolean algebras with no definable automorphisms , 1978 .

[14]  Johann A. Makowsky,et al.  The theorems of beth and Craig in abstract model theory II. Compact logics , 1981, Arch. Math. Log..

[15]  Saharon Shelah,et al.  On the no(M) for M of singular power , 1986 .

[16]  Saharon Shelah The Hanf numbers of stationary logic II: Comparison with other logics , 1992, Notre Dame J. Formal Log..

[17]  Saharon Shelah,et al.  On the number of nonisomorphic models of cardinality λ L∞λ-equivalent to a fixed model , 1981, Notre Dame J. Formal Log..

[18]  Saharon Shelah,et al.  Some notes on iterated forcing with 2ℵ0>ℵ2 , 1987, Notre Dame J. Formal Log..

[19]  Moti Gitik,et al.  Changing cofinalities and the nonstationary ideal , 1986 .

[20]  Saharon Shelah,et al.  Positive results in abstract model theory: a theory of compact logics , 1983, Ann. Pure Appl. Log..

[21]  E. Marczewski Séparabilité et multiplication cartésienne des espaces topologiques , 1947 .

[22]  Saharon Shelah,et al.  Classifi cation over a predicate II , 1985 .

[23]  Saharon Shelah,et al.  Stationary logic and its friends. I , 1985, Notre Dame J. Formal Log..

[24]  Saharon Shelah,et al.  Stationary logic and its friends. II , 1985, Notre Dame J. Formal Log..

[25]  Saharon Shelah,et al.  Classification theory - and the number of non-isomorphic models, Second Edition , 1990, Studies in logic and the foundations of mathematics.

[26]  Saharon Shelah,et al.  On the nonaxiomatizability of some logics by finitely many schemas , 1986, Notre Dame J. Formal Log..

[27]  J. A. Makowsky,et al.  The theorems of Beth and Craig in abstract model theory. I. The abstract setting , 1979 .

[28]  Saharon Shelah,et al.  On models with power-like orderings , 1972, Journal of Symbolic Logic.

[29]  Saharon Shelah Existence of many L∞, λ-equivalent, non- isomorphic models of T of power λ , 1987, Ann. Pure Appl. Log..

[30]  S. Shelah The consistency of Ext(G, Z)=Q , 1981 .

[31]  S. Shelah,et al.  δ-Logics and generalized quantifiers , 1976 .

[32]  Saharon Shelah,et al.  A weak version of ◊ which follows from 2ℵ0<2ℵ1 , 1978 .

[33]  Saharon Shelah,et al.  Classification theory over a predicate. I , 1985, Notre Dame J. Formal Log..