WYPIWYG hyperelasticity for isotropic, compressible materials

Nowadays the most common approach to model elastic behavior at large strains is through hyperelasticity. Hyperelastic models usually specify the shape of the stored energy function. This shape is modulated by some material parameters that are computed so the predicted stresses best fit the experimental data. Many stored energy functions have been proposed in the literature for isotropic and anisotropic materials, either compressible or incompressible. What-You-Prescribe-Is-What-You-Get (WYPIWYG) formulations present a different approach which may be considered an extension of the infinitesimal framework. The shape of the stored energy is not given beforehand but computed numerically from experimental data solving the equilibrium equations. The models exactly fit the experimental data without any material parameter. WYPIWYG procedures have comparable efficiency in finite element procedures as classical hyperelasticity. In this work we present a WYPIWYG numerical procedure for compressible isotropic materials and we motivate the formulation through an equivalent infinitesimal model.

[1]  Y. Kodama,et al.  Performance evaluation of various hyperelastic constitutive models of rubbers , 2015 .

[2]  T. Christian Gasser,et al.  Histo-Mechanical Modeling of the Wall of Abdominal Aorta Aneurysms , 2012 .

[3]  Kenji Urayama,et al.  An experimentalist's view of the physics of rubber elasticity , 2006 .

[4]  V. Nováček,et al.  Material model calibration from planar tension tests on porcine linea alba. , 2015, Journal of the mechanical behavior of biomedical materials.

[5]  Ciaran K Simms,et al.  Control of tension-compression asymmetry in Ogden hyperelasticity with application to soft tissue modelling. , 2015, Journal of the mechanical behavior of biomedical materials.

[6]  F. Montáns,et al.  A new approach to modeling isotropic damage for Mullins effect in hyperelastic materials , 2015 .

[7]  Francisco J. Montáns,et al.  Understanding the need of the compression branch to characterize hyperelastic materials , 2017 .

[8]  A. Ibrahimbegovic Nonlinear Solid Mechanics , 2009 .

[9]  F. Montáns,et al.  On the interpretation of the logarithmic strain tensor in an arbitrary system of representation , 2014 .

[10]  Tom Shearer,et al.  A new strain energy function for the hyperelastic modelling of ligaments and tendons based on fascicle microstructure. , 2015, Journal of biomechanics.

[11]  Oscar Lopez-Pamies,et al.  A new I1-based hyperelastic model for rubber elastic materials , 2010 .

[12]  Ray W. Ogden,et al.  Nonlinear Elastic Deformations , 1985 .

[13]  C. Constantinides,et al.  Uniaxial Stress-Strain Characteristics of Elastomeric Membranes: Theoretical Considerations, Computational Simulations, and Experimental Validation , 2015 .

[14]  Atef F. Saleeb,et al.  Nonlinear material parameter estimation for characterizing hyper elastic large strain models , 2000 .

[15]  D. Elliott,et al.  Modeling of Collagenous Tissues Using Distributed Fiber Orientations , 2016 .

[16]  P. Kakavas A new development of the strain energy function for hyperelastic materials using a logarithmic strain approach , 2000 .

[17]  A. Gent A New Constitutive Relation for Rubber , 1996 .

[18]  Paul Steinmann,et al.  Hyperelastic models for rubber-like materials: consistent tangent operators and suitability for Treloar’s data , 2012 .

[19]  Michael S Sacks,et al.  Incorporation of experimentally-derived fiber orientation into a structural constitutive model for planar collagenous tissues. , 2003, Journal of biomechanical engineering.

[20]  Mikhail Itskov,et al.  A class of orthotropic and transversely isotropic hyperelastic constitutive models based on a polyconvex strain energy function , 2004 .

[21]  L. Dorfmann,et al.  STRAIN-CONTROLLED BIAXIAL TENSION OF NATURAL RUBBER: NEW EXPERIMENTAL DATA , 2014 .

[22]  R. Landel,et al.  Mechanical Properties of Polymers and Composites , 1993 .

[23]  Paul Dierckx,et al.  Curve and surface fitting with splines , 1994, Monographs on numerical analysis.

[24]  Francisco J. Montáns,et al.  Fully anisotropic finite strain viscoelasticity based on a reverse multiplicative decomposition and logarithmic strains , 2016, 2104.02192.

[25]  Franz Maier,et al.  Human thoracic and abdominal aortic aneurysmal tissues: Damage experiments, statistical analysis and constitutive modeling. , 2015, Journal of the mechanical behavior of biomedical materials.

[26]  F. Montáns,et al.  Stress and strain mapping tensors and general work-conjugacy in large strain continuum mechanics , 2016 .

[27]  Stefan Hartmann,et al.  Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility , 2003 .

[28]  G. Kassab,et al.  Microstructure-Based Constitutive Models for Coronary Artery Adventitia , 2016 .

[29]  Reza Naghdabadi,et al.  A hyperelastic constitutive model for rubber-like materials , 2013 .

[30]  Klaus-Jürgen Bathe,et al.  A model of incompressible isotropic hyperelastic material behavior using spline interpolations of tension–compression test data , 2009 .

[31]  F. Montáns,et al.  Determination of the WYPiWYG strain energy density of skin through finite element analysis of the experiments on circular specimens , 2017 .

[32]  Robert J. Martin,et al.  Geometry of Logarithmic Strain Measures in Solid Mechanics , 2015, 1505.02203.

[33]  Ciaran K Simms,et al.  Uniaxial and biaxial mechanical properties of porcine linea alba. , 2015, Journal of the mechanical behavior of biomedical materials.

[34]  C. Gasser Histomechanical modeling of thewall of abdominal aortic aneurysm , 2016 .

[35]  R. Eubank Nonparametric Regression and Spline Smoothing , 1999 .

[36]  R. Ogden Large Deformation Isotropic Elasticity—On the Correlation of Theory and Experiment for Incompressible Rubberlike Solids , 1973 .

[37]  J. Guccione,et al.  Structural-Based Models of Ventricular Myocardium , 2016 .

[38]  Ivonne Sgura,et al.  Fitting hyperelastic models to experimental data , 2004 .

[39]  Francisco J. Montáns,et al.  Extension of the Sussman-Bathe spline-based hyperelastic model to incompressible transversely isotropic materials , 2013 .

[40]  A. Bower Applied Mechanics of Solids , 2009 .

[41]  G. Palmieri,et al.  Mullins effect characterization of elastomers by multi-axial cyclic tests and optical experimental methods , 2009 .

[42]  Y. Fung A first course in continuum mechanics , 1969 .

[43]  Gerhard A Holzapfel,et al.  Modelling non-symmetric collagen fibre dispersion in arterial walls , 2015, Journal of The Royal Society Interface.

[44]  J. Vander Sloten,et al.  Planar biaxial testing of soft biological tissue using rakes: A critical analysis of protocol and fitting process. , 2016, Journal of the mechanical behavior of biomedical materials.

[45]  William L. Ko,et al.  Application of Finite Elastic Theory to the Deformation of Rubbery Materials , 1962 .

[46]  F. Montáns,et al.  Anisotropic finite strain viscoelasticity based on the Sidoroff multiplicative decomposition and logarithmic strains , 2015 .

[47]  M. Epstein,et al.  Cardiovascular Solid Mechanics: Cells, Tissues, and Organs , 2002 .

[48]  Francisco J. Montáns,et al.  The relevance of transverse deformation effects in modeling soft biological tissues , 2016 .

[49]  Howard L. Weinert Fast Compact Algorithms and Software for Spline Smoothing , 2013, SpringerBriefs in Computer Science.

[50]  P. Dario,et al.  Hyperelastic models for the analysis of soft tissue mechanics: definition of constitutive parameters , 2006, The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006. BioRob 2006..

[51]  Gregory B. McKenna,et al.  Rubber modeling using uniaxial test data , 2001 .

[52]  E. Kearsley,et al.  Some Methods of Measurement of an Elastic Strain‐Energy Function of the Valanis‐Landel Type , 1980 .

[53]  Klaus-Jürgen Bathe,et al.  Modeling large strain anisotropic elasto-plasticity with logarithmic strain and stress measures , 2011 .

[54]  Anne M. Robertson,et al.  A structural multi-mechanism constitutive equation for cerebral arterial tissue , 2009 .

[55]  U. Saravanan,et al.  A new set of biaxial and uniaxial experiments on vulcanized rubber and attempts at modeling it using classical hyperelastic models , 2016 .

[56]  A. Kamenskiy,et al.  Effects of age on the physiological and mechanical characteristics of human femoropopliteal arteries. , 2015, Acta biomaterialia.

[57]  M. Mooney A Theory of Large Elastic Deformation , 1940 .

[58]  R. Landel,et al.  The Strain‐Energy Function of a Hyperelastic Material in Terms of the Extension Ratios , 1967 .

[59]  Luc Chevalier,et al.  Hyperelastic constitutive model for rubber-like materials based on the first Seth strain measures invariant , 2006 .

[60]  F. Montáns,et al.  Material-symmetries congruency in transversely isotropic and orthotropic hyperelastic materials , 2015 .

[61]  H. Darijani,et al.  Constitutive modeling of isotropic hyperelastic materials in an exponential framework using a self-contained approach , 2014 .

[62]  E. H. Twizell,et al.  Non-linear optimization of the material constants in Ogden's stress-deformation function for incompressinle isotropic elastic materials , 1983, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[63]  G. Holzapfel Determination of material models for arterial walls from uniaxial extension tests and histological structure. , 2006, Journal of theoretical biology.

[64]  Alfio Quarteroni,et al.  A numerical study of isotropic and anisotropic constitutive models with relevance to healthy and unhealthy cerebral arterial tissues , 2016 .

[65]  Francisco J. Montáns,et al.  What-You-Prescribe-Is-What-You-Get orthotropic hyperelasticity , 2014 .

[66]  Bar-Chaim Adina A case of acute leukaemia in a 38-years old female , 2012 .