Output-based mesh adaptation for high order Navier-Stokes simulations on deformable domains

We present an output-based mesh adaptation strategy for Navier-Stokes simulations on deforming domains. The equations are solved with an arbitrary Lagrangian-Eulerian (ALE) approach, using a discontinuous Galerkin finite-element discretization in both space and time. Discrete unsteady adjoint solutions, derived for both the state and the geometric conservation law, provide output error estimates and drive adaptation of the space-time mesh. Spatial adaptation consists of dynamic order increment or decrement on a fixed tessellation of the domain, while a combination of coarsening and refinement is used to provide an efficient time step distribution. Results from compressible Navier-Stokes simulations in both two and three dimensions demonstrate the accuracy and efficiency of the proposed approach. In particular, the method is shown to outperform other common adaptation strategies, which, while sometimes adequate for static problems, struggle in the presence of mesh motion. We present output-based mesh adaptation for Navier-Stokes on deforming domains.Space-time adaptation is driven by unsteady state and GCL adjoints.Significant reductions in mesh size and CPU time are obtained in 2 and 3 dimensions.If the GCL is used, a GCL adjoint is necessary for accurate error estimates.However, accurate outputs can often be obtained without the GCL.

[1]  Dimitri J. Mavriplis,et al.  Discrete Adjoint Based Time-Step Adaptation and Error Reduction in Unsteady Flow Problems , 2007 .

[2]  R. LeVeque Approximate Riemann Solvers , 1992 .

[3]  Michael J. Aftosmis,et al.  Adjoint Error Estimation and Adaptive Refinement for Embedded-Boundary Cartesian Meshes , 2007 .

[4]  Prabhu Ramachandran,et al.  Approximate Riemann solvers for the Godunov SPH (GSPH) , 2014, J. Comput. Phys..

[5]  Krzysztof J. Fidkowski,et al.  Output-Based Space-Time Mesh Adaptation for Unsteady Aerodynamics , 2011 .

[6]  D. Venditti,et al.  Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows , 2003 .

[7]  Steven M. Kast,et al.  Output-Adaptive Solution Strategies for Unsteady Aerodynamics on Deformable Domains , 2012 .

[8]  Timothy J. Barth,et al.  Space-Time Error Representation and Estimation in Navier-Stokes Calculations , 2013 .

[9]  Dimitri J. Mavriplis,et al.  Discrete Adjoint Based Adaptive Error Control in Unsteady Flow Problems , 2012 .

[10]  Rolf Rannacher,et al.  Goal‐oriented space–time adaptivity in the finite element Galerkin method for the computation of nonstationary incompressible flow , 2012 .

[11]  Karen Dragon Devine,et al.  A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems , 2002 .

[12]  Krzysztof J. Fidkowski,et al.  An Output-Based Dynamic Order Refinement Strategy for Unsteady Aerodynamics , 2012 .

[13]  S. Rebay,et al.  GMRES Discontinuous Galerkin Solution of the Compressible Navier-Stokes Equations , 2000 .

[14]  Th. Richter Discontinuous Galerkin as Time-Stepping Scheme for the Navier-Stokes Equations , 2009, HPSC.

[15]  T. Hou,et al.  Why nonconservative schemes converge to wrong solutions: error analysis , 1994 .

[16]  R. LeVeque Numerical methods for conservation laws , 1990 .

[17]  Boris Vexler,et al.  Adaptive Space-Time Finite Element Methods for Parabolic Optimization Problems , 2007, SIAM J. Control. Optim..

[18]  Andreas Griewank,et al.  Algorithm 799: revolve: an implementation of checkpointing for the reverse or adjoint mode of computational differentiation , 2000, TOMS.

[19]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[20]  Boris Vexler,et al.  Adaptivity with Dynamic Meshes for Space-Time Finite Element Discretizations of Parabolic Equations , 2007, SIAM J. Sci. Comput..

[21]  A. Jameson,et al.  Optimum Shape Design for Unsteady Three-Dimensional Viscous Flows Using a Nonlinear Frequency-Domain Method , 2006 .

[22]  Nail K. Yamaleev,et al.  Local-in-time adjoint-based method for design optimization of unsteady flows , 2010, J. Comput. Phys..

[23]  Jaime Peraire,et al.  Discontinuous Galerkin Solution of the Navier-Stokes Equations on Deformable Domains , 2007 .

[24]  Dimitri J. Mavriplis,et al.  Error estimation and adaptation for functional outputs in time-dependent flow problems , 2009, J. Comput. Phys..

[25]  D. Darmofal,et al.  Review of Output-Based Error Estimation and Mesh Adaptation in Computational Fluid Dynamics , 2011 .

[26]  Krzysztof J. Fidkowski,et al.  Output error estimation strategies for discontinuous Galerkin discretizations of unsteady convection‐dominated flows , 2011 .

[27]  Frédéric Alauzet,et al.  Time accurate anisotropic goal-oriented mesh adaptation for unsteady flows , 2012, J. Comput. Phys..

[28]  Rolf Rannacher,et al.  Modeling, Simulation and Optimization of Complex Processes, Proceedings of the International Conference on High Performance Scientific Computing, March 10-14, 2003, Hanoi, Vietnam , 2005, HPSC.

[29]  R. Hartmann,et al.  Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations , 2002 .

[30]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[31]  Anthony T. Patera,et al.  "Natural norm" a posteriori error estimators for reduced basis approximations , 2006, J. Comput. Phys..

[32]  Juan J. Alonso,et al.  Mesh Adaptation Criteria for Unsteady Periodic Flows Using a Discrete Adjoint Time-Spectral Formulation , 2006 .

[33]  Michael B. Giles,et al.  Adjoint Recovery of Superconvergent Functionals from PDE Approximations , 2000, SIAM Rev..

[34]  Krzysztof J. Fidkowski,et al.  Output-based space-time mesh adaptation for the compressible Navier-Stokes equations , 2011, J. Comput. Phys..

[35]  Sanjay Mittal,et al.  An adjoint method for shape optimization in unsteady viscous flows , 2010, J. Comput. Phys..

[36]  Antony Jameson,et al.  Optimum Shape Design for Unsteady Flows with Time-Accurate Continuous and Discrete Adjoint Methods , 2007 .

[37]  Dimitri J. Mavriplis,et al.  Adjoint Sensitivity Formulation for Discontinuous Galerkin Discretizations in Unsteady Inviscid Flow Problems , 2010 .

[38]  David W. Zingg,et al.  A General Framework for the Optimal Control of Unsteady Flows with Applications , 2007 .