High thermal conductivity composite of diamond particles with tungsten coating in a copper matrix for heat sink application

Abstract A composite material from particles of synthetic or natural diamond in a copper matrix, having a thermal conductivity (TC) of 500–900 W m−1 K−1, is obtained by capillary infiltration. A tungsten coating of 100–500 nm thickness is first applied to the diamond powder. The carbidization of the coating during annealing and melt infiltration is studied by X-ray diffraction. Measurements of TC λ, using the stationary heat flux method, and of thermal diffusivity a, using the flash method, agree. A longitudinal speed of sound of 8–9 km/s, an ultimate tensile strength of 150 MPa and a coefficient of thermal expansion (CTE) of ∼6 ppm/K at 25 °C are also measured for the composite. Model calculations of the composite’s CTE are carried out using the rule of mixtures and the Kerner and Turner equations. The composite’s specific electric resistance is 5–8 μΩ cm, according to calculations by the rule of mixtures, the Maxwell equation and the differential effective medium model. In comparison with other diamond–metal composites and materials with high TC intended for heat sinks, the composite developed is characterized by a combination of good thermal and mechanical properties, manufacturability and a relatively low cost.

[1]  J. Yu,et al.  Microstructure and thermal properties of diamond/aluminum composites with TiC coating on diamond particles , 2010 .

[2]  R. Pohl,et al.  Thermal boundary resistance , 1989 .

[3]  W. Tian,et al.  Thermal conductivity of SPS consolidated Cu/diamond composites with Cr-coated diamond particles , 2010 .

[4]  K. Weidenmann,et al.  Mechanical behaviour of diamond reinforced metals , 2009 .

[5]  Katsuhito Yoshida,et al.  Thermal properties of diamond/copper composite material , 2004, Microelectron. Reliab..

[6]  B. Kieback,et al.  Interfacial design of Cu-based composites prepared by powder metallurgy for heat sink applications , 2008 .

[7]  E. Neubauer,et al.  Interface Design in Copper-Diamond Composite by Using PVD and CVD Coated Diamonds , 2008 .

[8]  S. R. Bakshi,et al.  Carbon nanotube reinforced metal matrix composites - a review , 2010 .

[9]  Ndy Ekere,et al.  Investigation of thermal management materials for automotive electronic control units , 2011 .

[10]  R. Taylor,et al.  Radiation loss in the flash method for thermal diffusivity , 1975 .

[11]  S. Kidalov,et al.  Thermal Conductivity of Diamond Composites , 2009, Materials.

[12]  T. Ekstrom,et al.  Low-Pressure Fabrication of Diamond–SiC–Si Composites , 2001 .

[13]  R. J. Jenkins,et al.  Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity , 1961 .

[14]  C. Jia,et al.  Thermal Properties of Carbon Nanotube–Copper Composites for Thermal Management Applications , 2010, Nanoscale research letters.

[15]  H. L. Davidson,et al.  Dymalloy: A composite substrate for high power density electronic components , 1995 .

[16]  A. Jacobi,et al.  Ceramics and ceramic matrix composites for heat exchangers in advanced thermal systems—A review , 2010 .

[17]  L. Weber,et al.  Diamond-Based Metal Matrix Composites for Thermal Management Made by Liquid Metal Infiltration — Potential and Limits , 2008 .

[18]  Takashi Takeuchi,et al.  Thermal Properties of Diamond-Particle-Dispersed Cu-Matrix-Composites Fabricated by Spark Plasma Sintering (SPS) , 2010 .

[19]  S. Kidalov,et al.  Thermal conductivity of the diamond-paraffin wax composite , 2011 .

[20]  W. Clegg,et al.  Effect of titanium on copper–titanium/carbon nanofibre composite materials , 2010 .

[21]  Jean-Denis Mathias,et al.  Architectural optimization for microelectronic packaging , 2009 .

[22]  J. M. Córdoba,et al.  Thermomechanical properties of copper–carbon nanofibre composites prepared by spark plasma sintering and hot pressing , 2010 .

[23]  Robert D. Cowan,et al.  Pulse Method of Measuring Thermal Diffusivity at High Temperatures , 1961 .

[24]  C. Zweben Advances in composite materials for thermal management in electronic packaging , 1998 .

[25]  Li Yan,et al.  Fabrication and properties of W–Cu alloy reinforced by multi-walled carbon nanotubes , 2007 .

[26]  D. Chung Materials for thermal conduction , 2001 .

[27]  L. Weber,et al.  On the influence of active element content on the thermal conductivity and thermal expansion of Cu-X (X = Cr, B) diamond composites , 2007 .

[28]  A. Torregaray,et al.  Effect of the incorporation of interfacial elements on the thermophysical properties of Cu/VGCNFs composites , 2010 .

[29]  K. Weidenmann,et al.  Rigidity of diamond reinforced metals featuring high particle contents , 2009 .

[30]  A. Kelly,et al.  Influence of the elastic properties of the phases on the coefficient of thermal expansion of a metal matrix composite , 2011 .

[31]  S. Kidalov,et al.  High thermal conductivity composites consisting of diamond filler with tungsten coating and copper (silver) matrix , 2011 .