New Illumination compensation algorithm improving a multi-view video coding performance by advancing its temporal and inter-view correlation

Because of the different shooting position between multi-view cameras and the imperfect camera calibration, Illumination mismatches of multi-view video can happen. This variation can bring about the performance decrease of multi-view video coding(MVC) algorithm. A histogram matching algorithm can be applied to recompensate these inconsistencies in a prefiltering step. Once all camera frames of a multi-view sequence are adjusted to a predefined reference through the histogram matching, the coding efficiency of MVC is improved. However the histogram distribution can be different not only between neighboring views but also between sequential views on account of movements of camera angle and some objects, especially human. Therefore the histogram matching algorithm which references all frames in chose view is not appropriate for compensating the illumination differences of these sequence. Thus we propose new algorithms both the image classification algorithm which is applied two criteria to improve the correlation between inter-view frames and the histogram matching which references and matches with a group of pictures(GOP) as a unit to advance the correlation between successive frames. Experimental results show that the compression ratio for the proposed algorithm is improved comparing with the conventional algorithms.