Isogeny-based Quantum-resistant Undeniable Blind Signature Scheme

In this paper, we propose an Undeniable Blind Signature scheme (UBSS) based on isogenies between supersingular elliptic curves. The proposed UBSS is an extension of the Jao-Soukharev undeniable signature scheme [16]. We formalize the notion of a UBSS by giving the formal definition. We then study its properties along with the pros and cons. Based on this, we provide a couple of its applications. We then state the isogeny problems in a more general form and discuss their computational hardnesses. Finally, we prove that the proposed scheme is secure in the presence of a quantum adversary under certain assumptions.

[1]  David Jao,et al.  A Quantum Algorithm for Computing Isogenies between Supersingular Elliptic Curves , 2014, INDOCRYPT.

[2]  Ronald L. Rivest,et al.  RSA Problem , 2005, Encyclopedia of Cryptography and Security.

[3]  Chun-Ta Li,et al.  An electronic voting protocol with deniable authentication for mobile ad hoc networks , 2008, Comput. Commun..

[4]  A. Pizer Ramanujan graphs and Hecke operators , 1990 .

[5]  Raylin Tso,et al.  Convertible Undeniable Partially Blind Signature from Bilinear Pairings , 2008, 2008 IEEE/IFIP International Conference on Embedded and Ubiquitous Computing.

[6]  Cheng-Chi Lee,et al.  An Untraceable Blind Signature Scheme , 2003, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[7]  Cheng-Chi Lee,et al.  A new blind signature based on the discrete logarithm problem for untraceability , 2005, Appl. Math. Comput..

[8]  Mark Zhandry,et al.  Secure Signatures and Chosen Ciphertext Security in a Quantum Computing World , 2013, CRYPTO.

[9]  Kristin E. Lauter,et al.  On the quaternion -isogeny path problem , 2014, LMS J. Comput. Math..

[10]  Yehuda Lindell,et al.  Semi-honest Adversaries , 2010 .

[11]  Tzu-Yuan Chao,et al.  To reveal or not to reveal , 2017 .

[12]  David Jao,et al.  Post-Quantum Security Models for Authenticated Encryption , 2016, PQCrypto.

[13]  Masayuki Abe,et al.  How to Date Blind Signatures , 1996, ASIACRYPT.

[14]  S. Galbraith Constructing Isogenies between Elliptic Curves Over Finite Fields , 1999 .

[15]  Amos Fiat,et al.  How to Prove Yourself: Practical Solutions to Identification and Signature Problems , 1986, CRYPTO.

[16]  J. Tate Endomorphisms of abelian varieties over finite fields , 1966 .

[17]  Phillip Rogaway,et al.  On the Role Definitions in and Beyond Cryptography , 2004, ASIAN.

[18]  S. A. Goorden,et al.  Quantum-secure authentication of a physical unclonable key , 2014, CLEO 2015.

[19]  Tommaso Gagliardoni,et al.  The Fiat-Shamir Transformation in a Quantum World , 2013, IACR Cryptol. ePrint Arch..

[20]  Kaoru Kurosawa,et al.  Relations Among Security Notions for Undeniable Signature Schemes , 2006, SCN.

[21]  David Jao,et al.  Isogeny-Based Quantum-Resistant Undeniable Signatures , 2014, PQCrypto.

[22]  Gerrit Bleumer,et al.  Undeniable Signatures , 2011, Encyclopedia of Cryptography and Security.

[23]  Steven Myers,et al.  ANONIZE: A Large-Scale Anonymous Survey System , 2014, 2014 IEEE Symposium on Security and Privacy.

[24]  Edlyn Teske,et al.  The Pohlig-Hellman Method Generalized for Group Structure Computation , 1999, J. Symb. Comput..

[25]  Yumin Wang,et al.  Toward Quantum-Resistant Strong Designated Verifier Signature from Isogenies , 2012, 2012 Fourth International Conference on Intelligent Networking and Collaborative Systems.

[26]  Mark Zhandry,et al.  Quantum-Secure Message Authentication Codes , 2013, IACR Cryptol. ePrint Arch..

[27]  Dominique Unruh,et al.  Security of Blind Signatures Revisited , 2012, Journal of Cryptology.

[28]  Chin-Chen Chang,et al.  Security enhancement for anonymous secure e-voting over a network , 2003, Comput. Stand. Interfaces.

[29]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[30]  L. Lundberg,et al.  Advances in Computer Science - ASIAN 2004. Higher-Level Decision Making , 2005 .

[31]  David Jao,et al.  Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies , 2011, J. Math. Cryptol..

[32]  Stelvio Cimato,et al.  Encyclopedia of Cryptography and Security , 2005 .

[33]  Kouichi Sakurai,et al.  Blind Decoding, Blind Undeniable Signatures, and Their Applications to Privacy Protection , 1996, Information Hiding.

[34]  M. Hellman The Mathematics of Public-Key Cryptography , 1979 .

[35]  Rafail Ostrovsky,et al.  Security of Blind Digital Signatures (Extended Abstract) , 1997, CRYPTO.

[36]  David Chaum,et al.  Blind Signatures for Untraceable Payments , 1982, CRYPTO.

[37]  J. Milne Elliptic Curves , 2020 .

[38]  G. Ballew,et al.  The Arithmetic of Elliptic Curves , 2020, Elliptic Curves.

[39]  Kwangjo Kim,et al.  ID-Based Blind Signature and Ring Signature from Pairings , 2002, ASIACRYPT.

[40]  Kristin E. Lauter,et al.  Evaluating Large Degree Isogenies and Applications to Pairing Based Cryptography , 2008, Pairing.

[41]  Markus Rückert,et al.  Lattice-based Blind Signatures , 2010, Algorithms and Number Theory.

[42]  Boris Skoric,et al.  Quantum-secure authentication of a physical unclonable key , 2014, CLEO 2015.

[43]  Jan Camenisch,et al.  Blind Signatures Based on the Discrete Logarithm Problem , 1994, EUROCRYPT.

[44]  Zhixiong Chen,et al.  Convertible undeniable partially blind signatures , 2005, 19th International Conference on Advanced Information Networking and Applications (AINA'05) Volume 1 (AINA papers).