The First Chandra Field

Before the official first-light images, the Chandra X-Ray Observatory obtained an X-ray image of the field to which its focal plane was first exposed. We describe this historic observation and report our study of the first Chandra field. Chandra's Advanced CCD Imaging Spectrometer (ACIS) detected 15 X-ray sources, the brightest being dubbed Leon X-1 to honor the Chandra telescope scientist Leon Van Speybroeck. Based on our analysis of the X-ray data and spectroscopy at the European Southern Observatory (ESO; La Silla, Chile), we find that Leon X-1 is a type-1 (unobscured) active galactic nucleus (AGN) at redshift z = 0.3207. Leon X-1 exhibits strong Fe II emission and a broad-line Balmer decrement that is unusually flat for an AGN. Within the context of the eigenvector-1 correlation space, these properties suggest that Leon X-1 may be a massive (≥109 M☉) black hole, accreting at a rate approaching its Eddington limit.

[1]  Bonn,et al.  Two-temperature accretion flows in magnetic cataclysmic variables: structures of post-shock emission regions and X-ray spectroscopy , 2005, astro-ph/0504267.

[2]  N. Schartel,et al.  The XMM-Newton view of PG quasars - I. X-ray continuum and absorption , 2004, astro-ph/0411051.

[3]  M. Véron-Cetty,et al.  The unusual emission line spectrum of I Zw 1 , 2003, Proceedings of the International Astronomical Union.

[4]  P. Marziani,et al.  Radio-loud Active Galactic Nuclei in the Context of the Eigenvector 1 Parameter Space , 2003, astro-ph/0309469.

[5]  Jr.,et al.  Chandra Multiwavelength Project. II. First Results of X-Ray Source Properties , 2003, astro-ph/0308493.

[6]  D. Dewey,et al.  An Overview of the Performance of the Chandra X-ray Observatory , 2003, astro-ph/0503319.

[7]  Beverley J. Wills,et al.  Eddington Accretion and QSO Emission Lines at z ~ 2 , 2003, astro-ph/0306518.

[8]  J. Munn,et al.  The USNO-B Catalog , 2002, astro-ph/0210694.

[9]  M. McCollough,et al.  Chandra X-Ray Observations of the Spiral Galaxy M81 , 2002, astro-ph/0206160.

[10]  R. Zamanov,et al.  Searching for the Physical Drivers of Eigenvector 1: From Quasars to Nanoquasars , 2002, astro-ph/0204423.

[11]  J. Linsky,et al.  Chandra Observations of the Pleiades Open Cluster: X-Ray Emission from Late B- to Early F-Type Binaries , 2002, astro-ph/0204131.

[12]  S. Mao,et al.  Spectroscopic Properties of QSOs Selected from Ultraluminous Infrared Galaxy Samples , 2002, astro-ph/0203456.

[13]  R. Zamanov,et al.  Average Quasar Spectra in the Context of Eigenvector 1 , 2002, astro-ph/0201362.

[14]  T. Zwitter,et al.  Searching for the Physical Drivers of the Eigenvector 1 Correlation Space , 2001, astro-ph/0105343.

[15]  P. Marziani,et al.  Phenomenology of Broad Emission Lines in Active Galactic Nuclei , 2000 .

[16]  R. McCray,et al.  Astrophysical Journal, in press Preprint typeset using L ATEX style emulateapj v. 26/01/00 ON THE ABSORPTION OF X-RAYS IN THE INTERSTELLAR MEDIUM , 2000 .

[17]  T. Zwitter,et al.  Eigenvector 1: An Optimal Correlation Space for Active Galactic Nuclei , 2000, The Astrophysical journal.

[18]  Pavlov,et al.  The Compact Central Object in Cassiopeia A: A Neutron Star with Hot Polar Caps or a Black Hole? , 1999, The Astrophysical journal.

[19]  J. Hughes,et al.  Nucleosynthesis and Mixing in Cassiopeia A , 1999, The Astrophysical journal.

[20]  J. Krolik Active Galactic Nuclei , 1998 .

[21]  S. Drake,et al.  THE X-RAY EMISSION OF A-TYPE STARS , 1995 .

[22]  R. Terlevich,et al.  Extreme optical Fe II emission in luminous IRAS active galactic nuclei , 1993 .

[23]  Wei Zheng,et al.  Emission-line ratios at high densities , 1990 .

[24]  Martin J. Rees,et al.  Small Dense Broad-Line Regions in Active Nuclei , 1989 .

[25]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae and Active Galactic Nuclei , 1989 .

[26]  M. Rees,et al.  Radiative equilibrium of high-density clouds with application to active galactic nucleus continua , 1988 .

[27]  H. Shipman,et al.  Hydrogen line emission from optically thin accretion disks , 1988 .

[28]  I. Appenzeller,et al.  High-ionization line profiles of Seyfert galaxies , 1988 .

[29]  J. Baldwin,et al.  The emission-line regions in broad absorption line quasars , 1986 .

[30]  H. Netzer,et al.  Broad emission features in QSOs and active galactic nuclei. II - New observations and theory of Fe II and H I emission , 1985 .

[31]  D. Osterbrock Active Galactic Nuclei a , 1984 .

[32]  G. Williams Spectroscopy of cataclysmic variables. I. Observations. , 1983 .

[33]  G. Ferland,et al.  Stimulated Emission and the Flat Balmer Decrements of Cataclysmic Variable Stars , 1983 .

[34]  D. Pelat,et al.  High resolution line profiles in the Seyfert galaxy NGC 3783: The structure of the emitting regions , 1981 .

[35]  S. Drake,et al.  The emission-line spectrum from a slab of hydrogen at moderate to high densities. , 1980 .

[36]  J. Krolik,et al.  Hydrogen emission-line spectra in quasars and active galactic nuclei , 1978 .

[37]  H. Netzer Physical conditions in active nuclei – IV. The role of inelastic collisions , 1977 .

[38]  M. Phillips,et al.  The Optical Spectrum of i Zwicky 1 , 1976 .

[39]  H. Netzer Physical Conditions in Active Nuclei — I The Balmer Decrement , 1975 .

[40]  W. Adams,et al.  Effect of inelastic electron-atom collisions on the Balmer decrement , 1974 .

[41]  N. Panagia,et al.  On the spectrum of a gaseous nebula of pure hydrogen , 1971 .

[42]  D. Cox,et al.  Effects of Self-Absorption and Internal Dust on Hydrogen-Line Intensities in Gaseous Nebulae , 1969 .

[43]  E. Capriotti The Effect of Self-Absorption of Balmer-Line Radiation in Gaseous Nebulae due to Hydrogen Atoms in the 2s State. , 1964 .

[44]  R. Parker Erratum: the Spectrum of a Nebula Under Conditions of Collisional Excitation and Ionization. , 1964 .

[45]  D. Osterbrock,et al.  Balmer-Line Ratios in Planetary Nebulae. , 1963 .