The impact of the service discipline on delay asymptotics

[1]  Sem C. Borst,et al.  Fluid Queues with Heavy-Tailed M/G/ Input , 2005, Math. Oper. Res..

[2]  C. Klüppelberg,et al.  Tail behaviour of the busy period of a GI/GI/1 queue with subexponential service times , 2004 .

[3]  Predrag R. Jelenkovic,et al.  Large Deviations of Square Root Insensitive Random Sums , 2004, Math. Oper. Res..

[4]  F. Baccelli,et al.  Moments and tails in monotone-separable stochastic networks , 2004, math/0405281.

[5]  Predrag R. Jelenkovic,et al.  Reduced Load Equivalence under Subexponentiality , 2004, Queueing Syst. Theory Appl..

[6]  Sem C. Borst,et al.  The equivalence between processor sharing and service in random order , 2003, Oper. Res. Lett..

[7]  Sem C. Borst,et al.  Reduced-Load Equivalence and Induced Burstiness in GPS Queues with Long-Tailed Traffic Flows , 2003, Queueing Syst. Theory Appl..

[8]  Sem C. Borst,et al.  Pna Probability, Networks and Algorithms the Asymptotic Workload Behavior of Two Coupled Queues , 2022 .

[9]  Predrag R. Jelenkovic,et al.  Resource sharing with subexponential distributions , 2002, Proceedings.Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies.

[10]  Jin Cao,et al.  A Poisson limit for buffer overflow probabilities , 2002, Proceedings.Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies.

[11]  Rudesindo Núñez-Queija,et al.  Queues with Equally Heavy Sojourn Time and Service Requirement Distributions , 2002 .

[12]  Sem C. Borst,et al.  Heavy Tails: The Effect of the Service Discipline , 2002, Computer Performance Evaluation / TOOLS.

[13]  Peter G. Harrison,et al.  Computer Performance Evaluation: Modelling Techniques and Tools , 2002, Lecture Notes in Computer Science.

[14]  A. P. Zwart,et al.  Tail Asymptotics for the Busy Period in the GI/G/1 Queue , 2001, Math. Oper. Res..

[15]  Onno Boxma,et al.  Two coupled queues with heterogeneous traffic , 2001 .

[16]  S. Borst,et al.  Fluid queues with heavy-tailed M/G/infinity input , 2001 .

[17]  Q Qing Deng,et al.  The two-queue E=1-L polling model with regularly varying service and/or switchover times , 2001 .

[18]  S. Borst,et al.  Exact asymptotics for fluid queues fed by multiple heavy-tailed on-off flows , 2004, math/0406178.

[19]  Sem C. Borst,et al.  Coupled processors with regularly varying service times , 2000, Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064).

[20]  A. P. Zwart,et al.  Sojourn time asymptotics in the M/G/1 processor sharing queue , 1998, Queueing Syst. Theory Appl..

[21]  Onno Boxma,et al.  The single server queue : heavy tails and heavy traffic , 2000 .

[22]  R. Núñez Queija,et al.  Processor-Sharing Models for Integrated-Services Networks , 2000 .

[23]  R. Núñez Queija,et al.  Centrum Voor Wiskunde En Informatica Reportrapport Sojourn times in a Processor Sharing Queue with Service Interruptions Sojourn times in a Processor Sharing Queue with Service Interruptions , 2022 .

[24]  Venkat Anantharam,et al.  Scheduling strategies and long-range dependence , 1999, Queueing Syst. Theory Appl..

[25]  Gennady Samorodnitsky,et al.  Activity periods of an infinite server queue and performance of certain heavy tailed fluid queues , 1999, Queueing Syst. Theory Appl..

[26]  A. Arvidsson,et al.  On traffic models for TCP/IP , 1999 .

[27]  Jac Jacques Resing,et al.  Polling systems with regularly varying service and/or switchover times , 1999 .

[28]  T. Mikosch Regular variation, subexponentiality and their applications in probability theory , 1999 .

[29]  Onno J. Boxma,et al.  The busy period in the fluid queue , 1998, SIGMETRICS '98/PERFORMANCE '98.

[30]  Onno Boxma,et al.  Heavy-traffic analysis of the M/G/1 queue with priority classes , 1998 .

[31]  A. P. Zwart,et al.  Sojourn times in a multiclass processor sharing queue , 1998 .

[32]  S. Wittevrongel,et al.  Queueing Systems , 2019, Introduction to Stochastic Processes and Simulation.

[33]  D. Korshunov On distribution tail of the maximum of a random walk , 1997 .

[34]  C. Klüppelberg,et al.  Stationary M/G/1 excursions in the presence of heavy tails , 1997, Journal of Applied Probability.

[35]  Ward Whitt,et al.  Asymptotics for M/G/1 low-priority waiting-time tail probabilities , 1997, Queueing Syst. Theory Appl..

[36]  Azer Bestavros,et al.  Self-similarity in World Wide Web traffic: evidence and possible causes , 1996, SIGMETRICS '96.

[37]  Walter Willinger,et al.  Self-similarity through high-variability: statistical analysis of Ethernet LAN traffic at the source level , 1997, TNET.

[38]  Walter Willinger,et al.  Long-range dependence in variable-bit-rate video traffic , 1995, IEEE Trans. Commun..

[39]  V. Paxson,et al.  Wide-area traffic: the failure of Poisson modeling , 1994, SIGCOMM.

[40]  Ward Whitt,et al.  Waiting-time tail probabilities in queues with long-tail service-time distributions , 1994, Queueing Syst. Theory Appl..

[41]  D. B. Cline,et al.  Intermediate Regular and Π Variation , 1994 .

[42]  Walter Willinger,et al.  On the self-similar nature of Ethernet traffic , 1993, SIGCOMM '93.

[43]  Abhay Parekh,et al.  A generalized processor sharing approach to flow control in integrated services networks-the single node case , 1992, [Proceedings] IEEE INFOCOM '92: The Conference on Computer Communications.

[44]  Venkat Anantharam,et al.  How large delays build up in a GI/G/1 queue , 1989, Queueing Syst. Theory Appl..

[45]  C. Klüppelberg Subexponential distributions and integrated tails , 1988, Journal of Applied Probability.

[46]  S. F. Yashkov,et al.  Processor-sharing queues: Some progress in analysis , 1987, Queueing Syst. Theory Appl..

[47]  Teunis J. Ott,et al.  The sojourn-time distribution in the M/G/1 queue by processor sharing , 1984, Journal of Applied Probability.

[48]  R. Schassberger,et al.  A new approach to the M/G/1 processor-sharing queue , 1984, Advances in Applied Probability.

[49]  C. Marshall The Single Server Queue, Revised Edition , 1983 .

[50]  Onno Boxma,et al.  Boundary value problems in queueing system analysis , 1983 .

[51]  A. Konheim,et al.  Processor-sharing of two parallel lines , 1981, Journal of Applied Probability.

[52]  J. Geluk Π-regular variation , 1981 .

[53]  J. Teugels,et al.  On the asymptotic behaviour of the distributions of the busy period and service time in M/G/1 , 1980, Journal of Applied Probability.

[54]  G. Fayolle,et al.  Two coupled processors: The reduction to a Riemann-Hilbert problem , 1979 .

[55]  R. Butterworth,et al.  Queueing Systems, Vol. II: Computer Applications. , 1977 .

[56]  A. Pakes On the tails of waiting-time distributions , 1975, Journal of Applied Probability.

[57]  N. Bingham,et al.  Asymptotic properties of super-critical branching processes II: Crump-Mode and Jirina processes , 1975, Advances in Applied Probability.

[58]  N. Bingham,et al.  Asymptotic properties of supercritical branching processes I: The Galton-Watson process , 1974, Advances in Applied Probability.

[59]  J. Cohen Some results on regular variation for distributions in queueing and fluctuation theory , 1973, Journal of Applied Probability.

[60]  R. F. Brown,et al.  PERFORMANCE EVALUATION , 2019, ISO 22301:2019 and business continuity management – Understand how to plan, implement and enhance a business continuity management system (BCMS).

[61]  Shoichi Noguchi,et al.  An Analysis of the M/G/1 Queue Under Round-Robin Scheduling , 1971, Oper. Res..

[62]  Vincent Hodgson,et al.  The Single Server Queue. , 1972 .

[63]  Linus Schrage,et al.  The Queue M/G/1 with the Shortest Remaining Processing Time Discipline , 1966, Oper. Res..

[64]  V. Chistyakov A Theorem on Sums of Independent Positive Random Variables and Its Applications to Branching Random Processes , 1964 .

[65]  W. Feller An Introduction to Probability Theory and Its Applications , 1959 .

[66]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .