Long rainbow cycles in proper edge-colorings of complete graphs
暂无分享,去创建一个
Richard H. Schelp | Gábor N. Sárközy | András Gyárfás | Miklós Ruszinkó | R. Schelp | M. Ruszinkó | A. Gyárfás | G. N. Sárközy
[1] Carsten Thomassen,et al. Path and cycle sub-ramsey numbers and an edge-colouring conjecture , 1986, Discret. Math..
[2] Alan M. Frieze,et al. On Rainbow Trees and Cycles , 2008, Electron. J. Comb..
[3] Andries E. Brouwer,et al. A lower bound for the length of partial transversals in a latin square , 1978 .
[4] Alan M. Frieze,et al. Multicoloured Hamilton Cycles , 1995, Electron. J. Comb..
[5] Saieed Akbari,et al. On Rainbow Cycles in Edge Colored Complete Graphs , 2003 .
[6] Henry Meyniel,et al. On a problem of G. Hahn about coloured hamiltonian paths in K2t , 1984, Discret. Math..
[7] Mehdi Mhalla,et al. Rainbow and orthogonal paths in factorizations of Kn , 2010 .
[8] Lars Døvling Andersen. Hamilton circuits with many colours in properly edge-coloured complete graphs. , 1989 .
[9] Alan M. Frieze,et al. Polychromatic Hamilton cycles , 1993, Discret. Math..
[10] David E. Woolbright. An n x n Latin Square Has a Transversal with at Least n - square root of n Distinct Symbols , 1978, J. Comb. Theory, Ser. A.
[11] Pooya Hatami,et al. A lower bound for the length of a partial transversal in a Latin square , 2008, J. Comb. Theory, Ser. A.