Representation theory of finite semigroups, semigroup radicals and formal language theory

In this paper we characterize the congruence associated to the direct sum of all irreducible representations of a finite semigroup over an arbitrary field, generalizing results of Rhodes for the field of complex numbers. Applications are given to obtain many new results, as well as easier proofs of several results in the literature, involving: triangularizability of finite semigroups; which semigroups have (split) basic semigroup algebras, two-sided semidirect product decompositions of finite monoids; unambiguous products of rational languages; products of rational languages with counter; and Cerny's conjecture for an important class of automata.

[1]  Raymond E. Miller,et al.  Varieties of Formal Languages , 1986 .

[2]  Jean-Éric Pin Proprietes syntactiques du produit non ambigu , 1980, ICALP.

[3]  J. Rhodes,et al.  Complexity of Finite Semigroups , 1968 .

[4]  S. Margolis,et al.  CHARACTERIZATION OF GROUP RADICALS WITH AN APPLICATION TO MAL'CEV PRODUCTS , 2010 .

[5]  M. S. Putcha Semigroups and weights for group representations , 2000 .

[6]  The radical of the algebra of any finite semigroup over any field , 1970 .

[7]  Howard Straubing,et al.  Locally trivial categories and unambiguous concatenation , 1988 .

[8]  L. Renner Linear algebraic monoids , 1990 .

[9]  D. Passman,et al.  The algebraic structure of group rings , 1977 .

[10]  Ronald L. Graham On finite 0-simple semigroups and graph theory , 2005, Mathematical systems theory.

[11]  L. Dubuc,et al.  Sur Les Automates Circulaires et la Conjecture de Cerný , 1998, RAIRO Theor. Informatics Appl..

[12]  J. Wedderburn Note on Algebras , 1937 .

[13]  Jorge Almeida,et al.  The pseudovariety of semigroups of triangular matrices over a finite field , 2005, RAIRO Theor. Informatics Appl..

[14]  A. Björner,et al.  Combinatorics of Coxeter Groups , 2005 .

[15]  A. H. Clifford,et al.  Matrix Representations of Completely Simple Semigroups , 1942 .

[16]  Denis Thérien,et al.  DIAMONDS ARE FOREVER: THE VARIETY DA , 2002 .

[17]  J. A. Green,et al.  On the Structure of Semigroups , 1951 .

[18]  Jean-Éric Pin,et al.  Sur un Cas Particulier de la Conjecture de Cerny , 1978, ICALP.

[19]  A. Ovsyannikov Radical semigroup rings , 1985 .

[20]  Mohan S. Putcha,et al.  Complex Representations of Finite Monoids , 1996 .

[21]  Kenneth S. Brown Semigroup and Ring Theoretical Methods in Probability , 2003 .

[22]  M. S. Putcha Reciprocity in character theory of finite semigroups , 2001 .

[23]  The Jacobson radical of a band ring , 1989 .

[24]  Pascal Weil,et al.  Decomposition techniques for finite semigroups, using categories II , 1989 .

[25]  Denis Thérien SUBWORD COUNTING AND NILPOTENT GROUPS , 1983 .

[26]  Jorge Almeida A Syntactical Proof of Locality of da , 1996, Int. J. Algebra Comput..

[27]  Imre Simon,et al.  The Product of Rational Languages , 1993, ICALP.

[28]  Michael A. Arbib,et al.  Algebraic theory of machines, languages and semigroups , 1969 .

[29]  Bret Tilson,et al.  Categories as algebra: An essential ingredient in the theory of monoids , 1987 .

[30]  M. Schützenberger,et al.  Sur Le Produit De Concatenation Non Ambigu , 1976 .

[31]  Benjamin Steinberg,et al.  Synchronizing groups and automata , 2006, Theor. Comput. Sci..

[32]  John L. Rhodes,et al.  A homomorphism theorem for finite semigroups , 1967, Mathematical systems theory.

[33]  J. Okninski,et al.  Semigroups of Matrices , 1998 .

[34]  Imre Simon,et al.  Piecewise testable events , 1975, Automata Theory and Formal Languages.

[35]  W. Munn Matrix representations of semigroups , 1957, Mathematical Proceedings of the Cambridge Philosophical Society.

[36]  W. D. Munn,et al.  On semigroup algebras , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[37]  Benjamin Steinberg,et al.  Möbius functions and semigroup representation theory , 2006, J. Comb. Theory, Ser. A.

[38]  John Rhodes,et al.  The kernel of monoid morphisms , 1989 .

[39]  Operators on the Lattice of Pseudovarieties of Finite Semigroups , 1998 .

[40]  Mario Petrich,et al.  Irreducible matrix representations of finite semigroups , 1969 .

[41]  J. Pin On two Combinatorial Problems Arising from Automata Theory , 1983 .

[42]  Jarkko Kari,et al.  Synchronizing Finite Automata on Eulerian Digraphs , 2003, MFCS.

[43]  S. Margolis,et al.  MODULAR AND THRESHOLD SUBWORD COUNTING AND MATRIX REPRESENTATIONS OF FINITE MONOIDS , 2005 .

[44]  Pierre Péladeau Sur le produit avec compteur modulo un nombre entier , 1992, RAIRO Theor. Informatics Appl..

[45]  A. Clifford,et al.  The algebraic theory of semigroups , 1964 .

[46]  Tsit Yuen Lam,et al.  A first course in noncommutative rings , 2002 .

[47]  P. Hanlon,et al.  A combinatorial description of the spectrum for the Tsetlin library and its generalization to hyperplane arrangements , 1999 .

[48]  Benjamin Steinberg Möbius functions and semigroup representation theory II: Character formulas and multiplicities , 2006 .

[49]  Jorge Almeida,et al.  Finite Semigroups and Universal Algebra , 1995 .

[50]  Marcel Paul Schützenberger,et al.  On Finite Monoids Having Only Trivial Subgroups , 1965, Inf. Control..

[51]  Mohan S. Putcha Complex Representations of Finite Monoids II. Highest Weight Categories and Quivers , 1998 .

[52]  Mikhail V. Volkov,et al.  SOME RESULTS ON ČERNÝ TYPE PROBLEMS FOR TRANSFORMATION SEMIGROUPS , 2004 .

[53]  Pascal Weil,et al.  Closure of Varieties of Languages under Products with Counter , 1992, J. Comput. Syst. Sci..

[54]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[55]  Karl Auinger,et al.  On the extension problem for partial permutations , 2003 .

[56]  Yechezkel Zalcstein Studies in the representation theory of finite semigroups , 1971 .

[57]  Howard Straubing,et al.  A Generalization of the Schützenberger Product of Finite Monoids , 1981, Theor. Comput. Sci..

[58]  W. D. Munn,et al.  The Algebraic Theory of Semigroups, Vol. I , 1964, The Mathematical Gazette.

[59]  D. Mcalister Representations of semigroups by linear transformations , 1971 .

[60]  J. Rhodes Characters and complexity of finite semigroups , 1969 .

[61]  Kenneth S. Brown,et al.  Semigroups, Rings, and Markov Chains , 2000 .

[62]  Christophe Reutenauer,et al.  Sur les variétés de langages et de monoídes , 1979, Theoretical Computer Science.

[63]  John L. Rhodes,et al.  Undecidability, Automata, and Pseudovarities of Finite Semigroups , 1999, Int. J. Algebra Comput..