Representation theory of finite semigroups, semigroup radicals and formal language theory
暂无分享,去创建一个
[1] Raymond E. Miller,et al. Varieties of Formal Languages , 1986 .
[2] Jean-Éric Pin. Proprietes syntactiques du produit non ambigu , 1980, ICALP.
[3] J. Rhodes,et al. Complexity of Finite Semigroups , 1968 .
[4] S. Margolis,et al. CHARACTERIZATION OF GROUP RADICALS WITH AN APPLICATION TO MAL'CEV PRODUCTS , 2010 .
[5] M. S. Putcha. Semigroups and weights for group representations , 2000 .
[6] The radical of the algebra of any finite semigroup over any field , 1970 .
[7] Howard Straubing,et al. Locally trivial categories and unambiguous concatenation , 1988 .
[8] L. Renner. Linear algebraic monoids , 1990 .
[9] D. Passman,et al. The algebraic structure of group rings , 1977 .
[10] Ronald L. Graham. On finite 0-simple semigroups and graph theory , 2005, Mathematical systems theory.
[11] L. Dubuc,et al. Sur Les Automates Circulaires et la Conjecture de Cerný , 1998, RAIRO Theor. Informatics Appl..
[12] J. Wedderburn. Note on Algebras , 1937 .
[13] Jorge Almeida,et al. The pseudovariety of semigroups of triangular matrices over a finite field , 2005, RAIRO Theor. Informatics Appl..
[14] A. Björner,et al. Combinatorics of Coxeter Groups , 2005 .
[15] A. H. Clifford,et al. Matrix Representations of Completely Simple Semigroups , 1942 .
[16] Denis Thérien,et al. DIAMONDS ARE FOREVER: THE VARIETY DA , 2002 .
[17] J. A. Green,et al. On the Structure of Semigroups , 1951 .
[18] Jean-Éric Pin,et al. Sur un Cas Particulier de la Conjecture de Cerny , 1978, ICALP.
[19] A. Ovsyannikov. Radical semigroup rings , 1985 .
[20] Mohan S. Putcha,et al. Complex Representations of Finite Monoids , 1996 .
[21] Kenneth S. Brown. Semigroup and Ring Theoretical Methods in Probability , 2003 .
[22] M. S. Putcha. Reciprocity in character theory of finite semigroups , 2001 .
[23] The Jacobson radical of a band ring , 1989 .
[24] Pascal Weil,et al. Decomposition techniques for finite semigroups, using categories II , 1989 .
[25] Denis Thérien. SUBWORD COUNTING AND NILPOTENT GROUPS , 1983 .
[26] Jorge Almeida. A Syntactical Proof of Locality of da , 1996, Int. J. Algebra Comput..
[27] Imre Simon,et al. The Product of Rational Languages , 1993, ICALP.
[28] Michael A. Arbib,et al. Algebraic theory of machines, languages and semigroups , 1969 .
[29] Bret Tilson,et al. Categories as algebra: An essential ingredient in the theory of monoids , 1987 .
[30] M. Schützenberger,et al. Sur Le Produit De Concatenation Non Ambigu , 1976 .
[31] Benjamin Steinberg,et al. Synchronizing groups and automata , 2006, Theor. Comput. Sci..
[32] John L. Rhodes,et al. A homomorphism theorem for finite semigroups , 1967, Mathematical systems theory.
[33] J. Okninski,et al. Semigroups of Matrices , 1998 .
[34] Imre Simon,et al. Piecewise testable events , 1975, Automata Theory and Formal Languages.
[35] W. Munn. Matrix representations of semigroups , 1957, Mathematical Proceedings of the Cambridge Philosophical Society.
[36] W. D. Munn,et al. On semigroup algebras , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.
[37] Benjamin Steinberg,et al. Möbius functions and semigroup representation theory , 2006, J. Comb. Theory, Ser. A.
[38] John Rhodes,et al. The kernel of monoid morphisms , 1989 .
[39] Operators on the Lattice of Pseudovarieties of Finite Semigroups , 1998 .
[40] Mario Petrich,et al. Irreducible matrix representations of finite semigroups , 1969 .
[41] J. Pin. On two Combinatorial Problems Arising from Automata Theory , 1983 .
[42] Jarkko Kari,et al. Synchronizing Finite Automata on Eulerian Digraphs , 2003, MFCS.
[43] S. Margolis,et al. MODULAR AND THRESHOLD SUBWORD COUNTING AND MATRIX REPRESENTATIONS OF FINITE MONOIDS , 2005 .
[44] Pierre Péladeau. Sur le produit avec compteur modulo un nombre entier , 1992, RAIRO Theor. Informatics Appl..
[45] A. Clifford,et al. The algebraic theory of semigroups , 1964 .
[46] Tsit Yuen Lam,et al. A first course in noncommutative rings , 2002 .
[47] P. Hanlon,et al. A combinatorial description of the spectrum for the Tsetlin library and its generalization to hyperplane arrangements , 1999 .
[48] Benjamin Steinberg. Möbius functions and semigroup representation theory II: Character formulas and multiplicities , 2006 .
[49] Jorge Almeida,et al. Finite Semigroups and Universal Algebra , 1995 .
[50] Marcel Paul Schützenberger,et al. On Finite Monoids Having Only Trivial Subgroups , 1965, Inf. Control..
[51] Mohan S. Putcha. Complex Representations of Finite Monoids II. Highest Weight Categories and Quivers , 1998 .
[52] Mikhail V. Volkov,et al. SOME RESULTS ON ČERNÝ TYPE PROBLEMS FOR TRANSFORMATION SEMIGROUPS , 2004 .
[53] Pascal Weil,et al. Closure of Varieties of Languages under Products with Counter , 1992, J. Comput. Syst. Sci..
[54] Samuel Eilenberg,et al. Automata, languages, and machines. A , 1974, Pure and applied mathematics.
[55] Karl Auinger,et al. On the extension problem for partial permutations , 2003 .
[56] Yechezkel Zalcstein. Studies in the representation theory of finite semigroups , 1971 .
[57] Howard Straubing,et al. A Generalization of the Schützenberger Product of Finite Monoids , 1981, Theor. Comput. Sci..
[58] W. D. Munn,et al. The Algebraic Theory of Semigroups, Vol. I , 1964, The Mathematical Gazette.
[59] D. Mcalister. Representations of semigroups by linear transformations , 1971 .
[60] J. Rhodes. Characters and complexity of finite semigroups , 1969 .
[61] Kenneth S. Brown,et al. Semigroups, Rings, and Markov Chains , 2000 .
[62] Christophe Reutenauer,et al. Sur les variétés de langages et de monoídes , 1979, Theoretical Computer Science.
[63] John L. Rhodes,et al. Undecidability, Automata, and Pseudovarities of Finite Semigroups , 1999, Int. J. Algebra Comput..