Multiple quantum well based modulating retroreflectors for inter- and intra-spacecraft communication

Free space optics (FSO) can provide high data rates with efficient use of power. However, small platforms may not be able to support the payload requirements of a conventional FSO terminal. An alternative FSO terminal uses a modulating retro-reflector (MRR). MRRs shift most of the power, weight, and pointing requirements to one end of the link. With a MRR configuration, it is possible to establish a two-way FSO link using a single laser transmitter. The MRR terminal of these systems can be small, lightweight, and low power. The MRR maintains the small beam divergence of a conventional optical communications link, but gains the loose pointing advantage of an RF link, reducing the pointing requirements. Communication needs in space present many asymmetric scenarios in which a MRR architecture could be beneficial. This paper describes some of the current capabilities and limitations of MRR systems, as well as applications to space links. An evaluation of the radiation tolerance of modulators is presented.

[1]  Christopher I. Moore,et al.  45 Mbps cat's eye modulating retro-reflector link over 7 Km , 2006, SPIE Optics + Photonics.

[2]  G. C. Gilbreath,et al.  Modulating retroreflector implementation of mil-std 1553 protocol with free-space optics , 2003, 2003 IEEE Aerospace Conference Proceedings (Cat. No.03TH8652).

[3]  H. Stockman,et al.  Communication by Means of Reflected Power , 1948, Proceedings of the IRE.

[4]  Michael J. Vilcheck,et al.  Interspacecraft optical communication and navigation using modulating retroreflectors , 2004 .

[5]  Christopher I. Moore,et al.  Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment , 2005 .

[6]  Christopher I. Moore,et al.  Optical communication and navigation for spacecraft docking using modulating retroreflectors , 2005, SPIE Optics + Photonics.

[7]  Stephen G. Lambert,et al.  Laser Communications in Space , 1995 .

[8]  R. Mahon,et al.  A surface-normal coupled-quantum-well modulator at 1.55 /spl mu/m , 2004, IEEE Photonics Technology Letters.

[9]  William S. Rabinovich,et al.  Optimization of buffer layers for InGaAs/AlGaAs PIN optical modulators grown on GaAs substrates by molecular beam epitaxy , 2000 .

[10]  Christopher I. Moore,et al.  Free-space optical communication link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment , 2004, SPIE Optics + Photonics.

[11]  M. Ferraro,et al.  Retromodulator for optical tagging for LEO consumables , 2001, 2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542).

[12]  William S. Rabinovich,et al.  Retro-modulator links with a mini-rover , 2004, SPIE LASE.

[13]  Michael J. Vilcheck,et al.  Modulating retroreflector architecture using multiple quantum wells for free-space optical communications , 1998, Other Conferences.

[14]  Rita Mahon,et al.  Performance of cat's eye modulating retro-reflectors for free-space optical communications , 2004, SPIE Optics + Photonics.

[15]  Maha Achour Free-space optical communication by retromodulation: concept, technologies, and challenges , 2004, SPIE Security + Defence.

[16]  Michael J. Vilcheck,et al.  Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles , 2001 .

[17]  D.S. Katzer,et al.  Effects of proton irradiation on InGaAs/AlGaAs multiple quantum well modulators [for free-space optical communication] , 2001, 2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542).