D(n)-quintuples with square elements

For an integer n, a set of m distinct nonzero integers {a_1,a_2,...,a_m} such that a_i a_j+n is a perfect square for all 0<i<j<m+1, is called a D(n)-m-tuple. In this paper, we show that there are infinitely many essentially different D(n)-quintuples with square elements. We obtained this result by constructing genus one curves on a certain double cover of A^2 branched along four curves.

[1]  A. Togbé,et al.  There is no Diophantine quintuple , 2016, Transactions of the American Mathematical Society.

[2]  A. Dujella,et al.  Diophantine quadruples with the properties $$D(n_1)$$ and $$D(n_2)$$ , 2019, 1902.00777.

[3]  A. Filipin,et al.  Nonexistence of D(4)-quintuples , 2017, Journal of Number Theory.

[4]  Some Rational Diophantine Sextuples , 1999, math/9902081.

[5]  A. Dujella,et al.  Rational Diophantine sextuples containing two regular quadruples and one regular quintuple , 2019, 1904.00348.

[6]  T. A. A. Broadbent,et al.  Diophantus of Alexandria , 1966, The Mathematical Gazette.

[7]  G. B. M.,et al.  Diophantus of Alexandria: a Study in the History of Greek Algebra , 1911, Nature.

[8]  P. Grabner,et al.  Number Theory – Diophantine Problems, Uniform Distribution and Applications , 2017 .

[9]  A. Dujella,et al.  Doubly regular Diophantine quadruples , 2020, 2001.10702.

[10]  Diagonal genus 5 curves, elliptic curves over $\mathbb {Q}(t)$, and rational diophantine quintuples , 2017, Acta Arithmetica.

[11]  A. Dujella,et al.  Rational Diophantine sextuples with square denominators , 2019, Journal of Number Theory.

[12]  Andrej Dujella,et al.  There are only finitely many Diophantine quintuples , 2004 .

[13]  A. Dujella,et al.  Triples which are D(n)-sets for several n's , 2017, 1703.10659.

[14]  A. Dujella On Diophantine quintuples , 1997 .

[15]  DIAGONAL GENUS 5 CURVES, ELLIPTIC CURVES OVER Q(t), AND RATIONAL DIOPHANTINE QUINTUPLES , 2018 .

[16]  A. Dujella,et al.  Diophantine m-tuples in finite fields and modular forms , 2016, 1609.09356.

[17]  Sir Thomas L. Heath,et al.  Diophantos of Alexandria: A Study in the History of Greek Algebra , 1964 .

[18]  Andrej Dujella,et al.  Generalization of a problem of Diophantus , 1993 .

[19]  H. Davenport,et al.  THE EQUATIONS 3x2−2 = y2 AND 8x2−7 = z2 , 1969 .

[20]  A. Dujella,et al.  There are infinitely many rational Diophantine sextuples , 2015, 1507.00569.

[21]  Goran Dražić,et al.  Rational D(q)-quadruples , 2021, Indagationes Mathematicae.

[22]  A. Dujella,et al.  More on Diophantine Sextuples , 2016, 1609.06986.