Probability and hiding in concurrent processes

Action hiding and probabilistic choice have independently established their roles in process algebraic modeling and verification of concurrent systems. While action hiding allows abstraction from unimportant details and model reduction, and the induced nondeterminism enables modeling uncertainty in the system behaviour, probabilistic choice allows quantification of the nondeterminism. However, as not all of the nondeterministic behaviour has a random nature, we are faced with the challenge to combine the above two aspects of concurrent systems, such that one can take maximal advantage of both. This thesis addresses two problems regarding concurrent processes that exhibit both hidden and probabilistic behaviour, or probabilistic processes for short. Namely, a proper reduction of a model, by elimination of the hidden actions, requires a semantical equivalence that preserves the process properties of interest and is a congruence for the process operators. For non-probabilistic processes it has been shown that such an equivalence is branching bisimilarity. However, in the presence of probabilistic choice, more concretely in the alternating model of probabilistic processes, the intuitive notion of branching bisimulation is not a congruence for parallel composition. In this thesis a new branching bisimulation for this model is defined, and it is shown that this is the coarsest congruence for parallel composition that is included in the former. To achieve the congruence result, a hidden action preceding directly a non-trivial probabilistic choice cannot be eliminated. The new branching bisimulation preserves the properties expressible in the probabilistic computation tree logic, and is decidable in polynomial time. Similar to the non-probabilistic case, a single axiom characterizes branching bisimilarity for finite probabilistic processes. The previous results imply that branching bisimilarity, although potentially useful for model reduction, may be in fact too strong to serve as an equivalence relation for probabilistic processes. Another view, taken in the may/must testing theory (as well as in the process calculus CSP), is to distinguish two processes only if they can be distinguished when interacting with their environment, i.e. with another process. However, although processes that differ only in the moment an internal (nondeterministic) choice is made are not distinguished by this theory, for probabilistic processes this is no longer valid. The problem stems from an earlier observation that the schedulers that resolve the nondeterminism in concurrent probabilistic processes are too powerful and yield unrealistic overestimations of the probabilities with which a process can pass a test. The power of the schedulers comes from the fact that they allow the same choice to be resolved in different manners in different futures. In order to restrict the schedulers and thus to obtain the right probabilities, this thesis proposes integrating the information, based on which a nondeterministic choice is resolved, in labels on the nondeterministic transitions. In this way, choices using the same information are resolved in the same way, regardless of the considered future. As a result, the new testing preorder relation can be characterized by a probabilistic ready-trace preorder, a relation that is insensitive to the moment an internal choice is made, yet sensitive to deadlock and to action priorities. In other words, it combines useful features of both the bisimulation-style and the trace-style relations. The parallel composition is also generalized here to include both interleaving and action hiding after synchronization, and it is shown that probabilistic ready-trace preorder is a precongruence with respect to it. Finally, the CSP-style axiomatic characterization shows that all the distributivity laws for nondeterministic choice from CSP are preserved and no new laws are added.

[1]  Thomas A. Henzinger,et al.  Equivalence of Labeled Markov Chains , 2008, Int. J. Found. Comput. Sci..

[2]  Marius Adrian Marin,et al.  An Integrated System to Manage Crosscutting Concerns in Source Code , 2008 .

[3]  Hui Gao,et al.  Design and verification of lock-free parallel algorithms , 2005 .

[4]  Tom Staijen,et al.  Graph-based Specification and Verification for Aspect-Oriented Languages , 2010 .

[5]  Ivan Kurtev,et al.  Adaptability of model transformations , 2005 .

[6]  Erik P. de Vink,et al.  Probabilistic Automata: System Types, Parallel Composition and Comparison , 2004, Validation of Stochastic Systems.

[7]  Thomas A. Henzinger,et al.  Compositional Methods for Probabilistic Systems , 2001, CONCUR.

[8]  Martijn Hendriks,et al.  Model checking timed automata : techniques and applications , 2006 .

[9]  Carroll Morgan,et al.  Characterising Testing Preorders for Finite Probabilistic Processes , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).

[10]  Jan A. Bergstra,et al.  Algebra of Communicating Processes with Abstraction , 1985, Theor. Comput. Sci..

[11]  R. Boumen,et al.  Integration and test plans for complex manufacturing systems , 2007 .

[12]  Jan Friso Groote,et al.  An Efficient Algorithm for Branching Bisimulation and Stuttering Equivalence , 1990, ICALP.

[13]  Wolter Pieters,et al.  La volonté machinale: understanding the electronic voting controversy , 2008 .

[14]  Holger Hermanns,et al.  Towards Performance Prediction of Compositional Models in Industrial GALS Designs , 2009, CAV.

[15]  Sonja Georgievska,et al.  Probabilistic CSP: Preserving the Laws via Restricted Schedulers , 2012, MMB/DFT.

[16]  Pedro R. D'Argenio,et al.  Time-Bounded Reachability in Distributed Input/Output Interactive Probabilistic Chains , 2010, SPIN.

[17]  B. Gebremichael-Tesfagiorgis,et al.  Expressivity of Timed Automata Models , 2006 .

[18]  C. A. R. Hoare,et al.  Communicating sequential processes , 1978, CACM.

[19]  Gavin Lowe,et al.  Representing Nondeterministic and Probabilistic Behaviour in Reactive Processes , 1993 .

[20]  Gabriele Lenzini,et al.  Integration of Analysis Techniques in Security and Fault-Tolerance , 2005 .

[21]  Amir Pnueli,et al.  Verification of multiprocess probabilistic protocols , 2005, Distributed Computing.

[22]  Bengt Jonsson,et al.  Probabilistic Process Algebra , 2001 .

[23]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[24]  Jos C. M. Baeten,et al.  A compositional merge of probabilistic processes in the alternating model , 2006 .

[25]  Jan A. Bergstra,et al.  Branching time and orthogonal bisimulation equivalence , 2003, Theor. Comput. Sci..

[26]  Marta Z. Kwiatkowska,et al.  A Testing Equivalence for Reactive Probabilistic Processes , 1998, EXPRESS.

[27]  AJ Arjan Mooij,et al.  Constructive formal methods and protocol standardization , 2006 .

[28]  Aad Mathssen,et al.  Logical Calculi for Reasoning with Binding , 2008 .

[29]  Valentín Valero Ruiz,et al.  Algebraic theory of probabilistic and nondeterministic processes , 2003, J. Log. Algebraic Methods Program..

[30]  Nancy A. Lynch,et al.  Switched PIOA: Parallel composition via distributed scheduling , 2006, Theor. Comput. Sci..

[31]  Ronald A. Howard,et al.  Semi-Markov and decision processes , 1971 .

[32]  Verena Wolf Testing Theory for Probabilistic Systems , 2004, Model-Based Testing of Reactive Systems.

[33]  R. Bellman A Markovian Decision Process , 1957 .

[34]  Sonja Georgievska,et al.  Composing Systems While Preserving Probabilities , 2010, EPEW.

[35]  Cfj Christian Lange,et al.  Assessing and improving the quality of modeling : a series of empirical studies about the UML , 2007 .

[36]  Catuscia Palamidessi,et al.  Making Random Choices Invisible to the Scheduler , 2007, CONCUR.

[37]  B. J. Arnoldus,et al.  An illumination of the template enigma : software code generation with templates , 2011 .

[38]  Hans A. Hansson Time and probability in formal design of distributed systems , 1991, DoCS.

[39]  Thomas Wolle,et al.  Computational aspects of treewidth : Lower bounds and network reliability , 2005 .

[40]  Yee Wei Law,et al.  Key management and link-layer security of wireless sensor networks : Energy-efficient attack and defense , 2005 .

[41]  Jan Friso Groote,et al.  The meaning of negative premises in transition system specifications , 1991, JACM.

[42]  Joost-Pieter Katoen,et al.  Bisimulation Minimisation Mostly Speeds Up Probabilistic Model Checking , 2007, TACAS.

[43]  Mohammad Ali Abam New data structures and algorithms for mobile data , 2007 .

[44]  Jos C. M. Baeten,et al.  Process Algebra: Equational Theories of Communicating Processes , 2009 .

[45]  Ling Cheung,et al.  A testing scenario for probabilistic processes , 2007, JACM.

[46]  Eelco Dolstra,et al.  The purely functional software deployment model , 2006 .

[47]  Jos C. M. Baeten,et al.  A Ground-Complete Axiomatization of Finite State Processes in Process Algebra , 2005, CONCUR.

[48]  Christel Baier,et al.  Model checking for a probabilistic branching time logic with fairness , 1998, Distributed Computing.

[49]  Twan Basten,et al.  Branching Bisimilarity is an Equivalence Indeed! , 1996, Inf. Process. Lett..

[50]  R. V. Glabbeek CHAPTER 1 – The Linear Time - Branching Time Spectrum I.* The Semantics of Concrete, Sequential Processes , 2001 .

[51]  R Ronald Ruimerman,et al.  Modeling and remodeling in bone tissue , 2005 .

[52]  David Lindley,et al.  Introduction to Probability and Statistics from a Bayesian Viewpoint , 1966 .

[53]  Ling Cheung,et al.  Reconciling nondeterministic and probabilistic choices , 2006 .

[54]  Eu-Jin Goh,et al.  Searching on Encrypted Data , 2003 .

[55]  Nancy A. Lynch,et al.  Probabilistic Simulations for Probabilistic Processes , 1994, Nord. J. Comput..

[56]  Sonja Georgievska,et al.  Testing Reactive Probabilistic Processes , 2010, QAPL.

[57]  J. Doob Stochastic processes , 1953 .

[58]  Carroll Morgan,et al.  Testing finitary probabilistic processes (extended abstract) , 2009 .

[59]  Wang Yi,et al.  Testing preorders for probabilistic processes can be characterized by simulations , 2002, Theor. Comput. Sci..

[60]  Miguel E. Andrés,et al.  Quantitative Analysis of Information Leakage in Probabilistic and Nondeterministic Systems , 2011, ArXiv.

[61]  Magiel Bruntink,et al.  Renovation of idiomatic crosscutting concerns in embedded systems , 2005 .

[62]  Robin Milner,et al.  Operational and Algebraic Semantics of Concurrent Processes , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[63]  Andrew William Roscoe,et al.  The Theory and Practice of Concurrency , 1997 .

[64]  Laura Brandán Briones,et al.  Theories for Model-based Testing: Real-time and Coverage , 2007 .

[65]  Karen Seidel,et al.  Probabilistic Communicating Processes , 1992, Theor. Comput. Sci..

[66]  Moshe Y. Vardi Automatic verification of probabilistic concurrent finite state programs , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[67]  C. A. R. Hoare,et al.  A Theory of Communicating Sequential Processes , 1984, JACM.

[68]  Nancy A. Lynch,et al.  Observing Branching Structure through Probabilistic Contexts , 2007, SIAM J. Comput..

[69]  Rocco De Nicola,et al.  Three logics for branching bisimulation , 1995, JACM.

[70]  de A. Bruin,et al.  Service-oriented discovery of knowledge : foundations, implementations and applications , 2010 .

[71]  Rob J. van Glabbeek,et al.  Branching time and abstraction in bisimulation semantics , 1996, JACM.

[72]  Martijn Warnier,et al.  Language based security for Java and JML , 2006 .

[73]  C. J. Boogerd,et al.  Focusing Automatic Code Inspections , 2010 .

[74]  Ran Canetti,et al.  Universally composable security: a new paradigm for cryptographic protocols , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[75]  Sonja Georgievska,et al.  On Compositionality, Efficiency, and Applicability of Abstraction in Probabilistic Systems , 2009, SOFSEM.

[76]  Martin R. Neuhäußer,et al.  Model checking nondeterministic and randomly timed systems , 2010 .

[77]  Juan Visente Guillen Scholten,et al.  Mobile Channels for Exogenous Coordination of Distributed Systems: Semantics, Implementation and Composition , 2007 .

[78]  M. A. Valero Espada,et al.  Modal Abstraction and Replication of Processes with Data , 2005 .

[79]  Moshe Y. Vardi,et al.  Branching vs. Linear Time: Semantical Perspective , 2007, ATVA.

[80]  Roberto Segala,et al.  Testing Probabilistic Automata , 1996, CONCUR.

[81]  Jos C. M. Baeten,et al.  A Complete Axiomatisation of Branching Bisimulation for Probabilistic Systems with an Application in Protocol Verification , 2006, CONCUR.

[82]  Rocco De Nicola,et al.  Extensional equivalences for transition systems , 1987, Acta Informatica.

[83]  Mieke Massink,et al.  Basic Observables for Probabilistic May Testing , 2007, Fourth International Conference on the Quantitative Evaluation of Systems (QEST 2007).

[84]  Ronald A. Howard,et al.  Dynamic Programming and Markov Processes , 1960 .

[85]  Amir Pnueli,et al.  Linear and Branching Structures in the Semantics and Logics of Reactive Systems , 1985, ICALP.

[86]  Annabelle McIver,et al.  Refinement-oriented probability for CSP , 1996, Formal Aspects of Computing.

[87]  Jan A. Bergstra,et al.  Process Algebra for Synchronous Communication , 1984, Inf. Control..

[88]  Bahareh Badban,et al.  Verification Techniques for Extensions of Equality Logic , 2006 .

[89]  A. Morali,et al.  IT architecture-based confidentiality risk assessment in networks of organizations , 2011 .

[90]  Radha Jagadeesan,et al.  Weak bisimulation is sound and complete for pCTL* , 2002, Inf. Comput..

[91]  Leslie Pack Kaelbling,et al.  Planning and Acting in Partially Observable Stochastic Domains , 1998, Artif. Intell..

[92]  Bastiaan Stephan Graaf,et al.  Model-Driven Evolution of Software Architectures , 2007, 11th European Conference on Software Maintenance and Reengineering (CSMR'07).

[93]  Olga Tveretina,et al.  A Decision Procedure for Equality Logic with Uninterpreted Functions , 2004, AISC.

[94]  Lacramioara Astefanoaei,et al.  An executable theory of multi-agent systems refinement , 2011 .

[95]  Roberto Segala,et al.  Modeling and verification of randomized distributed real-time systems , 1996 .

[96]  Insup Lee,et al.  Weak Bisimulation for Probabilistic Systems , 2000, CONCUR.

[97]  Arjen van Weelden,et al.  Putting Types To Good Use , 2007 .

[98]  Roberto Segala,et al.  Axiomatizations for Probabilistic Bisimulation , 2001, ICALP.

[99]  Carroll Morgan,et al.  Remarks on Testing Probabilistic Processes , 2007, Computation, Meaning, and Logic.

[100]  Jan Friso Groote,et al.  Transition System Specifications with Negative Premises , 1993, Theor. Comput. Sci..

[101]  Anton Wijs,et al.  What to do next? Analysing and optimising system behaviour in time , 2007 .

[102]  Bengt Jonsson,et al.  A calculus for communicating systems with time and probabilities , 1990, [1990] Proceedings 11th Real-Time Systems Symposium.

[103]  Edmund M. Clarke,et al.  Design and Synthesis of Synchronization Skeletons Using Branching Time Temporal Logic , 2008, 25 Years of Model Checking.

[104]  Kim G. Larsen,et al.  Bisimulation through Probabilistic Testing , 1991, Inf. Comput..

[105]  Tomas Krilavicius,et al.  Hybrid Techniques for Hybrid Systems , 2006 .

[106]  M. T. Ionita,et al.  Scenario-based system architecting : a systematic approach to developing future-proof system architectures , 2005 .

[107]  Emmanuele Zambon,et al.  Towards optimal IT availability planning: methods and tools , 2011 .

[108]  Manuel Núñez,et al.  Specification, testing and implementation relations for symbolic-probabilistic systems , 2006, Theor. Comput. Sci..

[109]  Scott A. Smolka,et al.  Algebraic Reasoning for Probabilistic Concurrent Systems , 1990, Programming Concepts and Methods.

[110]  M. G. van der Horst,et al.  Scalable block processing algorithms , 2008 .

[111]  M Muhammad Atif,et al.  Formal modeling and verification of distributed failure detectors , 2011 .

[112]  Andrea Bianco,et al.  Model Checking of Probabalistic and Nondeterministic Systems , 1995, FSTTCS.

[113]  Jan A. Bergstra,et al.  Axiomization Probabilistic Processes: ACP with Generative Probabililties (Extended Abstract) , 1992, CONCUR.

[114]  David de Frutos-Escrig,et al.  A Sound and Complete Proof System for Probabilistic Processes , 1997, ARTS.

[115]  Sonja Georgievska,et al.  Retaining the Probabilities in Probabilistic Testing Theory , 2010, FoSSaCS.

[116]  Jeroen Eggermont,et al.  Data Mining using Genetic Programming : Classification and Symbolic Regression , 2005 .

[117]  Dmitri Jarnikov,et al.  QoS framework for video streaming in home networks , 2007 .

[118]  Ricardo Corin,et al.  Analysis Models for Security Protocols , 2006 .

[119]  Bas Luttik,et al.  Branching Bisimilarity with Explicit Divergence , 2009, Fundam. Informaticae.

[120]  Edward J. Sondik,et al.  The optimal control of par-tially observable Markov processes , 1971 .

[121]  Suzana Andova,et al.  Branching bisimulation for probabilistic systems: Characteristics and decidability , 2005, Theor. Comput. Sci..

[122]  Pedro R. D'Argenio,et al.  Quantitative Model Checking Revisited: Neither Decidable Nor Approximable , 2007, FORMATS.

[123]  Ana Sokolova,et al.  Information Hiding in Probabilistic Concurrent Systems , 2010, 2010 Seventh International Conference on the Quantitative Evaluation of Systems.

[124]  van Pja Paul Tilburg From computability to executability : a process-theoretic view on automata theory , 2011 .

[125]  T. D. Vu,et al.  Semantics and applications of process and program algebra , 2007 .

[126]  G Giovanni Russello,et al.  Separation and adaptation of concerns in a shared data space , 2006 .

[127]  Robin Milner,et al.  A Calculus of Communicating Systems , 1980, Lecture Notes in Computer Science.

[128]  Rob J. van Glabbeek,et al.  The meaning of negative premises in transition system specifications II , 1996, J. Log. Algebraic Methods Program..

[129]  Marta Z. Kwiatkowska,et al.  A Fully Abstract Metric-Space Denotational Semantics for Reactive Probabilistic Processes , 1997, COMPROX.

[130]  Rocco De Nicola,et al.  Testing Equivalences for Processes , 1984, Theor. Comput. Sci..

[131]  Nikolay Kavaldjiev,et al.  A run-time reconfigurable Network-on-Chip for streaming DSP applications , 2006 .

[132]  Bengt Jonsson,et al.  A logic for reasoning about time and reliability , 1990, Formal Aspects of Computing.

[133]  Jurgen Vinju,et al.  Analysis and transformation of source code by parsing and rewriting , 2005 .

[134]  Matthew Hennessy,et al.  Algebraic theory of processes , 1988, MIT Press series in the foundations of computing.

[135]  Holger Hermanns,et al.  Interactive Markov Chains , 2002, Lecture Notes in Computer Science.

[136]  Ivan Christoff,et al.  Testing Equivalences and Fully Abstract Models for Probabilistic Processes , 1990, CONCUR.

[137]  Rob J. van Glabbeek,et al.  What is Branching time semantics and why to use it? , 1994, Bull. EATCS.

[138]  Wang Yi,et al.  Testing Probabilistic and Nondeterministic Processes , 1992, PSTV.

[139]  S. Andova,et al.  Performance analysis of χ models using discrete-time probabilistic reward graphs , 2008, 2008 9th International Workshop on Discrete Event Systems.

[140]  Joost-Pieter Katoen,et al.  On Generative Parallel Composition , 1998, PROBMIV.

[141]  Mário S. Alvim,et al.  Safe Equivalences for Security Properties , 2010, IFIP TCS.

[142]  Sonja Georgievska,et al.  Branching bisimulation congruence for probabilistic systems , 2012, Theor. Comput. Sci..

[143]  Pedro R. D'Argenio,et al.  Partial Order Reduction for Probabilistic Systems: A Revision for Distributed Schedulers , 2009, CONCUR.

[144]  P. Zoeteweij,et al.  Composing constraint solvers , 2005 .

[145]  Pedro R. D'Argenio,et al.  On the Expressive Power of Schedulers in Distributed Probabilistic Systems , 2009, Electron. Notes Theor. Comput. Sci..

[146]  Peter Verbaan,et al.  The Computational Complexity of Evolving Systems , 2006 .

[147]  T. van deStorm Component-Based Configuration, Integration and Delivery , 2007 .

[148]  Anton Wijs,et al.  Silent steps in transition systems and Markov chains , 2007 .

[149]  Jos C. M. Baeten,et al.  Process Algebra , 2007, Handbook of Dynamic System Modeling.

[150]  Rance Cleaveland,et al.  Infinite Probabilistic and Nonprobabilistic Testing , 1998, FSTTCS.

[151]  Ana Sokolova,et al.  Coalgebraic analysis of probabilistic systems , 2005 .

[152]  Edmund M. Clarke,et al.  Characterizing Finite Kripke Structures in Propositional Temporal Logic , 1988, Theor. Comput. Sci..

[153]  Goran Frehse,et al.  Compositional verification of hybrid systems using simulation relations , 2005 .

[154]  Jan A. Bergstra,et al.  Syntax and defining equations for an interrupt mechanism in process algebra , 1985 .

[155]  Cjf Cas Cremers Scyther : semantics and verification of security protocols , 2006 .

[156]  R. Bakhshi Gossiping Models : Formal Analysis of Epidemic Protocols , 2011 .

[157]  Jun Pang,et al.  Compositional Reasoning for Probabilistic Finite-State Behaviors , 2005, Processes, Terms and Cycles.

[158]  U. Rieder,et al.  Markov Decision Processes , 2010 .

[159]  Hendrik Michaël van der Bijl,et al.  On changing models in model-based testing , 2011 .

[160]  Mari Antonius Cornelis Dekker,et al.  Flexible Access Control for Dynamic Collaborative Environments , 2009 .

[161]  Roberto Segala,et al.  Decision Algorithms for Probabilistic Bisimulation , 2002, CONCUR.

[162]  Jan A. Bergstra,et al.  Ready-Trace Semantics for Concrete Process Algebra with the Priority Operator , 1987, Comput. J..

[163]  Mihaela Sighireanu,et al.  A Graphical Parallel Composition Operator for Process Algebras , 1999, FORTE.

[164]  Scott A. Smolka,et al.  Composition and Behaviors of Probabilistic I/O Automata , 1994, Theor. Comput. Sci..

[165]  Z Zvezdan Protic,et al.  Configuration management for models : generic methods for model comparison and model co-evolution , 2011 .

[166]  Cheun Ngen Chong Experiments in rights control : expression and enforcement , 2005 .

[167]  Erika Ábrahám,et al.  An Assertional Proof System for Multithreaded Java - Theory and Tool Support , 2005 .

[168]  Roberto Segala,et al.  Comparative analysis of bisimulation relations on alternating and non-alternating probabilistic models , 2005, Second International Conference on the Quantitative Evaluation of Systems (QEST'05).