Anomalous continuum scattering and higher-order van Hove singularity in the strongly anisotropic S = 1/2 triangular lattice antiferromagnet

The S = 1/2 triangular lattice antiferromagnet (TLAF) stands out as a paradigmatic example of frustrated quantum magnetism. An ongoing challenge involves understanding the influence of exchange anisotropy on the collective behavior within such systems. Using inelastic neutron scattering (INS) and advanced calculation techniques, we have studied the low and high temperature spin dynamics of Ba2La2CoTe2O12 (BLCTO): a Co2+-based Jeff = 1/2 TLAF that exhibits 120 deg order below TN = 3.26 K. The spin Hamiltonian was determined by fitting the energy-resolved paramagnetic excitations measured at T>TN, revealing an exceptionally strong easy-plane XXZ exchange anisotropy. Below TN, the excitation spectrum exhibits a high energy continuum having a larger spectral weight than the single-magnon modes. Combined with advanced theoretical calculations of magnetic excitations based on magnons and spinons, this observation suggests a scenario characterized by a spinon confinement length that markedly exceeds the lattice spacing. We conjecture that this phenomenon arises due to the proximity to a quantum melting point, which persists even in the presence of strong easy-plane XXZ anisotropy. Finally, we highlight characteristic flat features in the excitation spectrum, which are connected to higher-order van Hove singularities in the magnon dispersion and are directly induced by easy-plane XXZ anisotropy. Our results provide a rare experimental insight into the nature of highly anisotropic S = 1/2 TLAFs between the Heisenberg and XY limits.

[1]  S. Gvasaliya,et al.  Continuum excitations in a spin-supersolid on a triangular lattice , 2024, 2401.16581.

[2]  M. Mourigal,et al.  Quantum-to-classical crossover in generalized spin systems: Temperature-dependent spin dynamics of FeI2 , 2024, Physical review B.

[3]  K. Schmalzl,et al.  Giant magnetocaloric effect in spin supersolid candidate Na2BaCo(PO4)2. , 2024, Nature.

[4]  C. D. Pemmaraju,et al.  Proximate spin liquid and fractionalization in the triangular antiferromagnet KYbSe_2 , 2023, Nature Physics.

[5]  Jiao Y. Y. Lin,et al.  Field-tuned quantum renormalization of spin dynamics in the honeycomb lattice Heisenberg antiferromagnet YbCl_3 , 2023, Communications Physics.

[6]  Je-Guen Park,et al.  Bond-dependent anisotropy and magnon decay in cobalt-based Kitaev triangular antiferromagnet , 2023, Nature Physics.

[7]  Xiaoyu Liu,et al.  Non-Kitaev versus Kitaev honeycomb cobaltates , 2022, Physical Review B.

[8]  M. Brando,et al.  Complete field-induced spectral response of the spin-1/2 triangular-lattice antiferromagnet CsYbSe2 , 2021, npj quantum materials.

[9]  David A. Dahlbom,et al.  Langevin dynamics of generalized spins as SU( N ) coherent states , 2022, Physical Review B.

[10]  David A. Dahlbom,et al.  Geometric integration of classical spin dynamics via a mean-field Schrödinger equation , 2022, Physical Review B.

[11]  C. Batista,et al.  Evidence of Two-Spinon Bound States in the Magnetic Spectrum of Ba$_3$CoSb$_2$O$_9$ , 2022, 2201.13369.

[12]  K. Nakajima,et al.  Magnons and spinons in Ba2CoTeO6 : A composite system of isolated spin- 12 triangular Heisenberg-like and frustrated honeycomb Ising-like antiferromagnets , 2021, Physical Review B.

[13]  Je-Guen Park,et al.  Spin-orbital entangled state and realization of Kitaev physics in 3d cobalt compounds: a progress report , 2021, Journal of physics. Condensed matter : an Institute of Physics journal.

[14]  Hao Zhang,et al.  Classical spin dynamics based on SU(N) coherent states , 2021, Physical Review B.

[15]  R. Valentí,et al.  Modified Curie-Weiss law for jeff magnets , 2021, Physical Review B.

[16]  M. Stone,et al.  Spin-orbit exciton in a honeycomb lattice magnet CoTiO3 : Revealing a link between magnetism in d - and f -electron systems , 2020, 2007.03764.

[17]  D. Prabhakaran,et al.  Avoided quasiparticle decay and enhanced excitation continuum in the spin- 12 near-Heisenberg triangular antiferromagnet Ba3CoSb2O9 , 2020, 2006.15554.

[18]  Stephen D. Wilson,et al.  Spin excitations in the frustrated triangular lattice antiferromagnet NaYbO2 , 2020, 2005.10375.

[19]  G. Ehlers,et al.  Van Hove singularity in the magnon spectrum of the antiferromagnetic quantum honeycomb lattice , 2020, Nature communications.

[20]  J. Chaloupka,et al.  Kitaev Spin Liquid in 3d Transition Metal Compounds. , 2020, Physical review letters.

[21]  N. Yuan,et al.  Classification of critical points in energy bands based on topology, scaling, and symmetry , 2019, Physical Review B.

[22]  C. Chamon,et al.  Catastrophe theory classification of Fermi surface topological transitions in two dimensions , 2019, Physical Review Research.

[23]  R. Moessner,et al.  Avoided quasiparticle decay from strong quantum interactions , 2019, Nature Physics.

[24]  M. Stone,et al.  Dirac Magnons in a Honeycomb Lattice Quantum XY Magnet CoTiO3 , 2019, Physical Review X.

[25]  W. Zhu,et al.  Dirac Spin Liquid on the Spin-1/2 Triangular Heisenberg Antiferromagnet. , 2019, Physical review letters.

[26]  R. Cava,et al.  Strong quantum fluctuations in a quantum spin liquid candidate with a Co-based triangular lattice , 2019, Proceedings of the National Academy of Sciences.

[27]  N. Yuan,et al.  Magic of high-order van Hove singularity , 2019, Nature Communications.

[28]  S. White,et al.  Anisotropic-Exchange Magnets on a Triangular Lattice: Spin Waves, Accidental Degeneracies, and Dual Spin Liquids , 2018, Physical Review X.

[29]  M. Avdeev,et al.  Quantum magnetic properties of the spin-12 triangular-lattice antiferromagnet Ba2La2CoTe2O12 , 2018, 1809.04817.

[30]  C. Batista,et al.  Dynamical structure factor of the triangular antiferromagnet: Schwinger boson theory beyond mean field , 2018, Physical Review B.

[31]  S. White,et al.  Topography of Spin Liquids on a Triangular Lattice. , 2018, Physical review letters.

[32]  Ryoya Sano,et al.  Kitaev-Heisenberg Hamiltonian for high-spin d 7 Mott insulators , 2017, 1710.11357.

[33]  G. Khaliullin,et al.  Pseudospin exchange interactions in d 7 cobalt compounds: Possible realization of the Kitaev model , 2017, 1710.10193.

[34]  K. Kakurai,et al.  Structure of the magnetic excitations in the spin-1/2 triangular-lattice Heisenberg antiferromagnet Ba3CoSb2O9 , 2017, Nature Communications.

[35]  Kun Yang,et al.  Global phase diagram and quantum spin liquids in a spin- 12 triangular antiferromagnet , 2017, 1705.00510.

[36]  S. White,et al.  Disorder-Induced Mimicry of a Spin Liquid in YbMgGaO_{4}. , 2017, Physical review letters.

[37]  H. Zhou,et al.  The nature of spin excitations in the one-third magnetization plateau phase of Ba3CoSb2O9 , 2017, Nature Communications.

[38]  C. Chamon,et al.  Electrons at the monkey saddle: A multicritical Lifshitz point , 2016, 1606.04950.

[39]  I. McCulloch,et al.  Symmetry fractionalization in the topological phase of the spin-1/2 J(1)-J(2) triangular Heisenberg model , 2016, 1606.00334.

[40]  A. Lauchli,et al.  Chiral spin liquid and quantum criticality in extended S =1/2 Heisenberg models on the triangular lattice , 2016, 1604.07829.

[41]  R. Thomale,et al.  Spin liquid nature in the Heisenberg J1-J2 triangular antiferromagnet , 2016, 1601.06018.

[42]  H. Kee,et al.  Spin-Orbit Physics Giving Rise to Novel Phases in Correlated Systems: Iridates and Related Materials , 2015, 1507.06323.

[43]  H. Kee,et al.  Magnetic orders proximal to the Kitaev limit in frustrated triangular systems: Application to Ba 3 IrTi 2 O 9 , 2015, 1507.06307.

[44]  Wei Zhu,et al.  Competing spin-liquid states in the spin- 1 2 Heisenberg model on the triangular lattice , 2015, 1504.00654.

[45]  S. White,et al.  Spin liquid phase of the S = 1 2 J 1 − J 2 Heisenberg model on the triangular lattice , 2015, 1502.04831.

[46]  Shenghao Xu,et al.  Supplementary Information , 2014, States at War, Volume 3.

[47]  B. Bauer,et al.  Spin-orbit physics of j =1/2 Mott insulators on the triangular lattice , 2014, 1409.6972.

[48]  P. F. Peterson,et al.  Mantid - Data Analysis and Visualization Package for Neutron Scattering and $μ SR$ Experiments , 2014, 1407.5860.

[49]  B. Lake,et al.  Linear spin wave theory for single-Q incommensurate magnetic structures , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[50]  Z. Bajnok,et al.  Introduction to the Statistical Physics of Integrable Many-body Systems , 2013 .

[51]  M. Mourigal,et al.  Dynamical structure factor of the triangular-lattice antiferromagnet , 2013, 1306.1231.

[52]  Yong Baek Kim,et al.  Correlated Quantum Phenomena in the Strong Spin-Orbit Regime , 2013, 1305.2193.

[53]  G. Jackeli,et al.  Kitaev-Heisenberg model on a honeycomb lattice: possible exotic phases in iridium oxides A2IrO3. , 2010, Physical review letters.

[54]  A. Chernyshev,et al.  Spin waves in a triangular lattice antiferromagnet: Decays, spectrum renormalization, and singularities , 2009, 0901.4803.

[55]  Alexei Kitaev,et al.  Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.

[56]  F. Mila Quantum spin liquids , 2000 .

[57]  T. Proffen,et al.  Analysis of Diffuse Scattering via the Reverse Monte Carlo Technique: a Systematic Investigation , 1997 .

[58]  D. Thouless,et al.  Ordering, metastability and phase transitions in two-dimensional systems , 1973 .

[59]  Philip W. Anderson,et al.  Resonating valence bonds: A new kind of insulator? , 1973 .

[60]  V. Berezinsky,et al.  Destruction of long range order in one-dimensional and two-dimensional systems having a continuous symmetry group. I. Classical systems , 1970 .