Evolutionary Architecture for Lifelong Learning and RealTime Operation in Autonomous Robots

[1]  Dario Floreano,et al.  Evolution of Plastic Control Networks , 2001, Auton. Robots.

[2]  Richard J. Duro,et al.  On Line Darwinist Cognitive Mechanism for an Artificial Organism , 2006 .

[3]  Conor Ryan,et al.  Non-stationary Function Optimization using Polygenic Inheritance , 1999, GECCO.

[4]  Xin Yao,et al.  Evolving artificial neural networks , 1999, Proc. IEEE.

[5]  Zbigniew Michalewicz,et al.  Evolutionary Approach to Non-stationary Optimisation Tasks , 1999, ISMIS.

[6]  M. Conrad Evolutionary learning circuits. , 1974, Journal of theoretical biology.

[7]  Richard J. Duro,et al.  Induced Behavior in a Real Agent Using the Multilevel Darwinist Brain , 2005, IWINAC.

[8]  Risto Miikkulainen,et al.  Evolving Neural Networks through Augmenting Topologies , 2002, Evolutionary Computation.

[9]  Risto Miikkulainen,et al.  A neuro-evolution method for dynamic resource allocation on a chip multiprocessor , 2001, IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222).

[10]  Ulrich Nehmzow Physically Embedded Genetic Algorithm Learning in Multi-Robot Scenarios: The PEGA algorithm , 2002 .

[11]  Jordan B. Pollack,et al.  Embodied Evolution: Distributing an evolutionary algorithm in a population of robots , 2002, Robotics Auton. Syst..

[12]  Richard J. Duro,et al.  Considerations in the application of evolution to the generation of robot controllers , 2001, Inf. Sci..

[13]  Richard J. Duro,et al.  Introducing Long Term Memory in an ANN Based Multilevel Darwinist Brain , 2003, IWANN.

[14]  Richard J. Duro,et al.  MA vs. GA in Low Population Evolutionary Processes with Mostly Flat Fitness Landscapes , 2002, JCIS.

[15]  Ricard V. Solé,et al.  Macroevolutionary algorithms: a new optimization method on fitness landscapes , 1999, IEEE Trans. Evol. Comput..

[16]  D. R. McGregor,et al.  Designing application-specific neural networks using the structured genetic algorithm , 1992, [Proceedings] COGANN-92: International Workshop on Combinations of Genetic Algorithms and Neural Networks.

[17]  Francisco Bellas,et al.  Modelling the world with statistically neutral PBGAs. Enhancement and real applications , 2002, Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02..

[18]  Gary B. Parker,et al.  Co-evolving model parameters for anytime learning in evolutionary robotics , 2000, Robotics Auton. Syst..

[19]  John J. Grefenstette,et al.  An Approach to Anytime Learning , 1992, ML.

[20]  Joanne H. Walker,et al.  Evolving Controllers for Real Robots: A Survey of the Literature , 2003, Adapt. Behav..

[21]  J. Changeux,et al.  A theory of the epigenesis of neuronal networks by selective stabilization of synapses. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[22]  R. Duro,et al.  Behavior reuse and virtual sensors in the evolution of complex behavior architectures , 2001 .