Nontransversal curves of T-points: a source of closed curves of global bifurcations

Abstract A model is derived to explain the existence of closed bifurcation curves of homoclinic and heteroclinic connections in autonomous three-dimensional systems. This scenario is related to the failure of transversality in a curve of a certain kind of codimension-two heteroclinic loops. The predictions deduced from this model strongly agree with the numerical results obtained in a modified van der Pol–Duffing electronic oscillator.

[1]  V. V. Bykov,et al.  The bifurcations of separatrix contours and chaos , 1993 .

[2]  Alejandro J. Rodríguez-Luis,et al.  The non-transverse Shil'nikov-Hopf bifurcation: uncoupling of homoclinic orbits and homoclinic tangencies , 1999 .

[3]  Isolas, cusps and global bifurcations in an electronic oscillator , 1997 .

[4]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[5]  Alejandro J. Rodríguez-Luis,et al.  A case study for homoclinic chaos in an autonomous electronic circuit: a trip taken from Takens-Bogdanov to Hopf-Sbil'nikov , 1993 .

[6]  G. Belitskii Functional equations and conjugacy of local diffeomorphisms of a finite smoothness class , 1973 .

[7]  Alejandro J. Rodríguez-Luis,et al.  A three-parameter study of a degenerate case of the Hopf-pitchfork bifurcation , 1999 .

[8]  Alejandro J. Rodríguez-Luis,et al.  Takens-Bogdanov bifurcations of periodic orbits and Arnold's Tongues in a Three-Dimensional Electronic Model , 2001, Int. J. Bifurc. Chaos.

[9]  Yu. A. Kuznetsov,et al.  NUMERICAL DETECTION AND CONTINUATION OF CODIMENSION-TWO HOMOCLINIC BIFURCATIONS , 1994 .

[10]  E. Gamero,et al.  A Tame Degenerate Hopf-Pitchfork Bifurcation in a Modified van der Pol–Duffing Oscillator , 2000 .

[11]  Colin Sparrow,et al.  T-points: A codimension two heteroclinic bifurcation , 1986 .

[12]  Stephen Wiggins Global Bifurcations and Chaos: Analytical Methods , 1988 .

[13]  L. Franquelo,et al.  Periodicity and chaos in an autonomous electronic system , 1984 .

[14]  Thomas F. Fairgrieve,et al.  AUTO 2000 : CONTINUATION AND BIFURCATION SOFTWARE FOR ORDINARY DIFFERENTIAL EQUATIONS (with HomCont) , 1997 .

[15]  Y. Kuznetsov Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.

[16]  Stephen Wiggins,et al.  Global Bifurcations and Chaos , 1988 .

[17]  E. Freire,et al.  T-Points in a Z2-Symmetric Electronic Oscillator. (I) Analysis , 2002 .