Nonlinear isogeometric spatial Bernoulli Beam
暂无分享,去创建一个
Roland Wüchner | Kai-Uwe Bletzinger | A. M. Bauer | B. Philipp | M. Breitenberger | K. Bletzinger | R. Wüchner | M. Breitenberger | B. Philipp | A. Bauer
[1] Dieter Weichert,et al. Nonlinear Continuum Mechanics of Solids , 2000 .
[2] M. Crisfield. A consistent co-rotational formulation for non-linear, three-dimensional, beam-elements , 1990 .
[3] Steen Krenk,et al. Non-linear Modeling and Analysis of Solids and Structures , 2009 .
[4] S. Antman. Nonlinear problems of elasticity , 1994 .
[5] Thomas J. R. Hughes,et al. Isogeometric shell analysis: The Reissner-Mindlin shell , 2010 .
[6] R. Echter,et al. A hierarchic family of isogeometric shell finite elements , 2013 .
[7] Carl T.F. Ross,et al. Strength of materials and structures , 1992 .
[8] Alessandro Reali,et al. Locking-free isogeometric collocation methods for spatial Timoshenko rods , 2013 .
[9] Ignacio Romero,et al. A comparison of finite elements for nonlinear beams: the absolute nodal coordinate and geometrically exact formulations , 2008 .
[10] J. C. Simo,et al. A finite strain beam formulation. The three-dimensional dynamic problem. Part I , 1985 .
[11] Jose Manuel Valverde,et al. Invariant Hermitian finite elements for thin Kirchhoff rods. II: The linear three-dimensional case , 2012 .
[12] G. Dupuis,et al. NONLINEAR MATERIAL AND GEOMETRIC BEHAVIOR OF SHELL STRUCTURES. , 1971 .
[13] Thomas J. R. Hughes,et al. A large deformation, rotation-free, isogeometric shell , 2011 .
[14] Roland Wüchner,et al. Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .
[15] Joel Langer,et al. Lagrangian Aspects of the Kirchhoff Elastic Rod , 1996, SIAM Rev..
[16] Roland Wüchner,et al. Integrated design and analysis of structural membranes using the Isogeometric B-Rep Analysis , 2016 .
[17] Wolfgang A. Wall,et al. A locking-free finite element formulation and reduced models for geometrically exact Kirchhoff rods , 2015 .
[18] K. Bathe,et al. Large displacement analysis of three‐dimensional beam structures , 1979 .
[19] E. Dvorkin,et al. On a non‐linear formulation for curved Timoshenko beam elements considering large displacement/rotation increments , 1988 .
[20] I N Bronstein,et al. Taschenbuch der Mathematik , 1966 .
[21] Roland Wüchner,et al. Analysis in computer aided design: Nonlinear isogeometric B-Rep analysis of shell structures , 2015 .
[22] Yuri Bazilevs,et al. Isogeometric rotation-free bending-stabilized cables: Statics, dynamics, bending strips and coupling with shells , 2013 .
[23] J. C. Simo,et al. A three-dimensional finite-strain rod model. Part II: Computational aspects , 1986 .
[24] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[25] H. Rubin. Evaluierung der linearen und nichtlinearen Stabstatik in Theorie und Software. Prüfbeispiele, Fehlerursachen, genaue Theorie. Von G. Lumpe, V. Gensichen , 2014 .
[26] Alain Goriely,et al. On the Dynamics of Elastic Strips , 2001, J. Nonlinear Sci..
[27] Les A. Piegl,et al. The NURBS Book , 1995, Monographs in Visual Communication.
[28] C. Gontier,et al. A large displacement analysis of a beam using a CAD geometric definition , 1995 .
[29] B. Simeon,et al. Isogeometric Reissner–Mindlin shell analysis with exactly calculated director vectors , 2013 .
[30] Wolfgang A. Wall,et al. An objective 3D large deformation finite element formulation for geometrically exact curved Kirchhoff rods , 2014 .
[31] Leopoldo Greco,et al. B-Spline interpolation of Kirchhoff-Love space rods , 2013 .
[32] S. H. Lo,et al. Geometrically nonlinear formulation of 3D finite strain beam element with large rotations , 1992 .
[33] Robert A. Heller. Mechanics of Structures , 2003 .