Reconstruction of the event vertex in the PandaX-III experiment with convolution neural network

[1]  M. Decowski,et al.  Search for the Majorana Nature of Neutrinos in the Inverted Mass Ordering Region with KamLAND-Zen. , 2022, Physical review letters.

[2]  T. Papaevangelou,et al.  REST-for-Physics, a ROOT-based framework for event oriented data analysis and combined Monte Carlo response , 2021, Comput. Phys. Commun..

[3]  P. T. Surukuchi,et al.  Search for Majorana neutrinos exploiting millikelvin cryogenics with CUORE , 2021, Nature.

[4]  K. Ni,et al.  Signal identification with Kalman Filter towards background-free neutrinoless double beta decay searches in gaseous detectors , 2021, Journal of High Energy Physics.

[5]  R. K. Neely,et al.  Convolutional neural network for multiple particle identification in the MicroBooNE liquid argon time projection chamber , 2020, Physical Review D.

[6]  R. Webb,et al.  Demonstration of background rejection using deep convolutional neural networks in the NEXT experiment , 2020, 2009.10783.

[7]  M. Misiaszek,et al.  Final Results of GERDA on the Search for Neutrinoless Double-β Decay. , 2020, Physical review letters.

[8]  S. Wang The TPC detector of PandaX-III Neutrinoless Double Beta Decay experiment , 2020, Journal of Instrumentation.

[9]  Tao Zhang,et al.  Topological background discrimination in the PandaX-III neutrinoless double beta decay experiment , 2019, Journal of Physics G: Nuclear and Particle Physics.

[10]  A. K. Soma,et al.  Search for Neutrinoless Double-β Decay with the Complete EXO-200 Dataset. , 2019, Physical review letters.

[11]  R. Webb,et al.  Demonstration of the event identification capabilities of the NEXT-White detector , 2019, Journal of High Energy Physics.

[12]  P. Ferrario,et al.  High Pressure Gas Xenon TPCs for Double Beta Decay Searches , 2019, Front. Phys..

[13]  Carla P. Gomes,et al.  Understanding Batch Normalization , 2018, NeurIPS.

[14]  G. Cardella,et al.  GET: A generic electronics system for TPCs and nuclear physics instrumentation , 2018 .

[15]  J. Liu,et al.  Design and commissioning of a 600 L Time Projection Chamber with Microbulk Micromegas , 2018, Journal of Instrumentation.

[16]  Hao Qiao,et al.  Signal-background discrimination with convolutional neural networks in the PandaX-III experiment using MC simulation , 2018, Science China Physics, Mechanics & Astronomy.

[17]  Stephan Aune,et al.  PandaX-III: Searching for neutrinoless double beta decay with high pressure 136Xe gas time projection chambers , 2016, 1610.08883.

[18]  P. Vahle,et al.  A convolutional neural network neutrino event classifier , 2016, ArXiv.

[19]  D. C. Herrera Development of a Micromegas Time Projection Chamber in Xe-based Penning Mixtures for Rare Event Searches , 2016 .

[20]  L. M. Moutinho,et al.  Accurate γ and MeV-electron track reconstruction with an ultra-low diffusion Xenon/TMA TPC at 10 atm , 2015, 1504.03678.

[21]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[22]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[23]  Andrew L. Maas Rectifier Nonlinearities Improve Neural Network Acoustic Models , 2013 .

[24]  Frank T. Avignone,et al.  Double Beta Decay, Majorana Neutrinos, and Neutrino Mass , 2007, 0708.1033.

[25]  Hans-Peter Kriegel,et al.  Density-Based Clustering in Spatial Databases: The Algorithm GDBSCAN and Its Applications , 1998, Data Mining and Knowledge Discovery.

[26]  A. Dell'Acqua,et al.  Geant4 - A simulation toolkit , 2003 .

[27]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[28]  Thomas,et al.  Recombination of electron-ion pairs in liquid argon and liquid xenon. , 1987, Physical review. A, General physics.

[29]  R. Crompton,et al.  Diffusion and drift of electrons in gases , 1974 .

[30]  F. M. Penning Über den Einfluß sehr geringer Beimischungen auf die Zündspannung der Edelgase , 1928 .