Reconstruction of the event vertex in the PandaX-III experiment with convolution neural network
暂无分享,去创建一个
W. Wang | K. Ni | Heng Lin | Kyong Chol Han | Shaobo Wang | Tao Li | Yu Chen
[1] M. Decowski,et al. Search for the Majorana Nature of Neutrinos in the Inverted Mass Ordering Region with KamLAND-Zen. , 2022, Physical review letters.
[2] T. Papaevangelou,et al. REST-for-Physics, a ROOT-based framework for event oriented data analysis and combined Monte Carlo response , 2021, Comput. Phys. Commun..
[3] P. T. Surukuchi,et al. Search for Majorana neutrinos exploiting millikelvin cryogenics with CUORE , 2021, Nature.
[4] K. Ni,et al. Signal identification with Kalman Filter towards background-free neutrinoless double beta decay searches in gaseous detectors , 2021, Journal of High Energy Physics.
[5] R. K. Neely,et al. Convolutional neural network for multiple particle identification in the MicroBooNE liquid argon time projection chamber , 2020, Physical Review D.
[6] R. Webb,et al. Demonstration of background rejection using deep convolutional neural networks in the NEXT experiment , 2020, 2009.10783.
[7] M. Misiaszek,et al. Final Results of GERDA on the Search for Neutrinoless Double-β Decay. , 2020, Physical review letters.
[8] S. Wang. The TPC detector of PandaX-III Neutrinoless Double Beta Decay experiment , 2020, Journal of Instrumentation.
[9] Tao Zhang,et al. Topological background discrimination in the PandaX-III neutrinoless double beta decay experiment , 2019, Journal of Physics G: Nuclear and Particle Physics.
[10] A. K. Soma,et al. Search for Neutrinoless Double-β Decay with the Complete EXO-200 Dataset. , 2019, Physical review letters.
[11] R. Webb,et al. Demonstration of the event identification capabilities of the NEXT-White detector , 2019, Journal of High Energy Physics.
[12] P. Ferrario,et al. High Pressure Gas Xenon TPCs for Double Beta Decay Searches , 2019, Front. Phys..
[13] Carla P. Gomes,et al. Understanding Batch Normalization , 2018, NeurIPS.
[14] G. Cardella,et al. GET: A generic electronics system for TPCs and nuclear physics instrumentation , 2018 .
[15] J. Liu,et al. Design and commissioning of a 600 L Time Projection Chamber with Microbulk Micromegas , 2018, Journal of Instrumentation.
[16] Hao Qiao,et al. Signal-background discrimination with convolutional neural networks in the PandaX-III experiment using MC simulation , 2018, Science China Physics, Mechanics & Astronomy.
[17] Stephan Aune,et al. PandaX-III: Searching for neutrinoless double beta decay with high pressure 136Xe gas time projection chambers , 2016, 1610.08883.
[18] P. Vahle,et al. A convolutional neural network neutrino event classifier , 2016, ArXiv.
[19] D. C. Herrera. Development of a Micromegas Time Projection Chamber in Xe-based Penning Mixtures for Rare Event Searches , 2016 .
[20] L. M. Moutinho,et al. Accurate γ and MeV-electron track reconstruction with an ultra-low diffusion Xenon/TMA TPC at 10 atm , 2015, 1504.03678.
[21] Jimmy Ba,et al. Adam: A Method for Stochastic Optimization , 2014, ICLR.
[22] Andrew Zisserman,et al. Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.
[23] Andrew L. Maas. Rectifier Nonlinearities Improve Neural Network Acoustic Models , 2013 .
[24] Frank T. Avignone,et al. Double Beta Decay, Majorana Neutrinos, and Neutrino Mass , 2007, 0708.1033.
[25] Hans-Peter Kriegel,et al. Density-Based Clustering in Spatial Databases: The Algorithm GDBSCAN and Its Applications , 1998, Data Mining and Knowledge Discovery.
[26] A. Dell'Acqua,et al. Geant4 - A simulation toolkit , 2003 .
[27] Hans-Peter Kriegel,et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.
[28] Thomas,et al. Recombination of electron-ion pairs in liquid argon and liquid xenon. , 1987, Physical review. A, General physics.
[29] R. Crompton,et al. Diffusion and drift of electrons in gases , 1974 .
[30] F. M. Penning. Über den Einfluß sehr geringer Beimischungen auf die Zündspannung der Edelgase , 1928 .