Geochronology - Aims and reminiscences

[1]  P. Kelemen,et al.  Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance , 2007 .

[2]  S. Parman,et al.  Helium isotopic evidence for episodic mantle melting and crustal growth , 2007, Nature.

[3]  F. Albarède,et al.  Pb–Pb dating constraints on the accretion and cooling history of chondrites , 2007 .

[4]  H. Rollinson Recognising early Archaean mantle: a reappraisal , 2007 .

[5]  M. Whitehouse,et al.  Zircon as a Monitor of Crustal Growth , 2007 .

[6]  N. Kelly,et al.  Zircon Tiny but Timely , 2007 .

[7]  J. Kramers Hierarchical Earth accretion and the Hadean Eon , 2007, Journal of the Geological Society.

[8]  M. Norman,et al.  Identifying impact events within the lunar cataclysm from 40Ar–39Ar ages and compositions of Apollo 16 impact melt rocks , 2006 .

[9]  C. Hawkesworth,et al.  Evolution of the continental crust , 2006, Nature.

[10]  L. A. Coogan,et al.  Do the trace element compositions of detrital zircons require Hadean continental crust , 2006 .

[11]  T. M. Harrison,et al.  Geology, Age and Origin of Supracrustal Rocks at Akilia, West Greenland , 2006, American Journal of Science.

[12]  M. Whitehouse,et al.  Re-evaluation of the origin and evolution of > 4.2 Ga zircons from the Jack Hills metasedimentary rocks , 2006 .

[13]  B. Windley,et al.  4.2 Ga zircon xenocryst in an Acasta gneiss from northwestern Canada : Evidence for early continental crust , 2006 .

[14]  B. Bourdon,et al.  High-precision 142Nd/144Nd measurements in terrestrial rocks : Constraints on the early differentiation of the Earth's mantle , 2006 .

[15]  T. M. Harrison,et al.  Heterogeneous Hadean Hafnium: Evidence of Continental Crust at 4.4 to 4.5 Ga , 2005, Science.

[16]  M. Whitehouse,et al.  Volcanic resurfacing and the early terrestrial crust: Zircon U-Pb and REE constraints from the Isua Greenstone Belt, southern West Greenland [rapid communication] , 2005 .

[17]  John Frederick Rudge,et al.  A theoretical approach to understanding the isotopic heterogeneity of mid-ocean ridge basalt , 2005 .

[18]  M. Rosing,et al.  Search for traces of the late heavy bombardment on Earth—Results from high precision chromium isotopes , 2005 .

[19]  S. Jacobsen,et al.  THE Hf-W ISOTOPIC SYSTEM AND THE ORIGIN OF THE EARTH AND MOON , 2005 .

[20]  S. Moorbath Oldest rocks, earliest life, heaviest impacts, and the Hadean-Archaean transition , 2005 .

[21]  P. Hoskin Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia , 2005 .

[22]  J. Crowley U–Pb geochronology of 3810–3630 Ma granitoid rocks south of the Isua greenstone belt, southern West Greenland , 2003 .

[23]  M. Whitehouse,et al.  Inheritance of early Archaean Pb-isotope variability from long-lived Hadean protocrust , 2003 .

[24]  I. Villa,et al.  Geochronology: Linking the Isotope Record With Petrology And Textures , 2003 .

[25]  B. Kamber,et al.  Tungsten isotope evidence from ∼3.8-Gyr metamorphosed sediments for early meteorite bombardment of the Earth , 2002, Nature.

[26]  A. Nutman,et al.  Constraints on mantle evolution from 187Os/188Os isotopic compositions of Archean ultramafic rocks from southern West Greenland (3.8 Ga) and Western Australia (3.46 Ga) , 2002 .

[27]  S. Wilde,et al.  A cool early Earth , 2002 .

[28]  S. Wilde,et al.  Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons: Ion microprobe evidence for high δ 18 O continental crust and oceans in the Early Archean , 2001 .

[29]  C. Fedo,et al.  Depositional setting and paleogeographic implications of earth's oldest supracrustal rocks, the >3.7 Ga Isua Greenstone belt, West Greenland , 2001 .

[30]  J. Myers Protoliths of the 3.8-3.7 Ga Isua greenstone belt, West Greenland , 2001 .

[31]  Simon A. Wilde,et al.  Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago , 2001, Nature.

[32]  M. Norman,et al.  Meta-igneous (non-gneissic) tonalites and quartz-diorites from an extensive ca. 3800 Ma terrain south of the Isua supracrustal belt, southern West Greenland: constraints on early crust formation , 1999 .

[33]  M. Whitehouse,et al.  Age significance of U-Th-Pb zircon data from early Archaean rocks of west Greenland - a reassessment based on combined ion-microprobe and imaging studies , 1999 .

[34]  K. Condie EPISODIC CONTINENTAL GROWTH AND SUPERCONTINENTS : A MANTLE AVALANCHE CONNECTION? , 1998 .

[35]  Appel,et al.  Recognizable primary volcanic and sedimentary features in a low‐strain domain of the highly deformed, oldest known (≈ 3.7–3.8 Gyr) Greenstone Belt, Isua, West Greenland , 1998 .

[36]  M. Rosing,et al.  ̃ 3710 and ⪖ 3790 Ma volcanic sequences in the Isua (Greenland) supracrustal belt; structural and Nd isotope implications , 1997 .

[37]  S. Goldstein,et al.  Influence of Accretion on Lead in the Earth , 2013 .

[38]  A. Hofmann,et al.  Mantle plumes and episodic crustal growth , 1994, Nature.

[39]  W. Compston,et al.  Ion microprobe identification of 4,100–4,200 Myr-old terrestrial zircons , 1983, Nature.

[40]  S. Moorbath,et al.  Origin of granitic magma by crustal remobilisation: Rb-Sr and Pb/Pb geochronology and isotope geochemistry of the late Archaean Qôrqut Granite Complex of southern West Greenland , 1981 .

[41]  R. Armstrong,et al.  Radiogenic isotopes: the case for crustal recycling on a near-steady-state no-continental-growth Earth , 1981, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[42]  S. Moorbath Ages, isotopes and evolution of Precambrian continental crust , 1977 .

[43]  R. Pankhurst,et al.  Further rubidium–strontium age and isotope evidence for the nature of the late Archaean plutonic event in West Greenland , 1976, Nature.

[44]  Martin H. Dodson,et al.  Closure temperature in cooling geochronological and petrological systems , 1973 .

[45]  B. Walton The Early Precambrian Gneisses of the Godthab District, West Greenland: Discussion , 1973 .

[46]  N. Gale,et al.  The significance of lead isotope studies in ancient, high-grade metamorphic basement complexes, as exemplified by the Lewisian rocks of Northwest Scotland , 1969 .

[47]  H. Sigurdsson,et al.  Lead isotope studies on igneous rocks from Iceland , 1968 .

[48]  H. Sigurdsson,et al.  KAr ages of the oldest exposed rocks in Iceland , 1968 .

[49]  S. Moorbath,et al.  Lead isotope studies on igneous rocks from the isle of Skye, Northwest Scotland , 1968 .

[50]  G. Walker,et al.  Strontium Isotope Investigation of Igneous Rocks From Iceland , 1965, Nature.

[51]  S. Moorbath,et al.  Strontium Isotope Abundance Studies and Rubidium—Strontium Age Determinations on Tertiary Igneous Rocks from the Isle of Skye North-West Scotland , 1965 .

[52]  G. Faure,et al.  The Isotopic Composition of Strontium in Oceanic and Continental Basalts: Application to the Origin of Igneous Rocks , 1963 .