Room-temperature polar ferromagnet ScFeO3 transformed from a high-pressure orthorhombic perovskite phase.

Multiferroic materials have been the subject of intense study, but it remains a great challenge to synthesize those presenting both magnetic and ferroelectric polarizations at room temperature. In this work, we have successfully obtained LiNbO3-type ScFeO3, a metastable phase converted from the orthorhombic perovskite formed under 15 GPa at elevated temperatures. A combined structure analysis by synchrotron X-ray and neutron powder diffraction and high-angle annular dark-field scanning transmission electron microscopy imaging reveals that this compound adopts the polar R3c symmetry with a fully ordered arrangement of trivalent Sc and Fe ions, forming highly distorted ScO6 and FeO6 octahedra. The calculated spontaneous polarization along the hexagonal c-axis is as large as 100 μC/cm(2). The magnetic studies show that LiNbO3-type ScFeO3 is a weak ferromagnet with TN = 545 K due to a canted G-type antiferromagnetic ordering of Fe(3+) spins, representing the first example of LiNbO3-type oxides with magnetic ordering far above room temperature. A comparison of the present compound and rare-earth orthorhombic perovskites RFeO3 (R = La-Lu and Y), all of which possess the corner-shared FeO6 octahedral network, allows us to find a correlation between TN and the Fe-O-Fe bond angle, indicating that the A-site cation-size-dependent octahedral tilting dominates the magnetic transition through the Fe-O-Fe superexchange interaction. This work provides a general and versatile strategy to create materials in which ferroelectricity and ferromagnetism coexist at high temperatures.

[1]  M. Croft,et al.  Designing polar and magnetic oxides: Zn2FeTaO6--in search of multiferroics. , 2014, Journal of the American Chemical Society.

[2]  V. Petříček,et al.  Crystallographic Computing System JANA2006: General features , 2014 .

[3]  A. Belik,et al.  High-pressure synthesis, crystal chemistry and physics of perovskites with small cations at the A site , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[4]  M. Nakayama,et al.  High-pressure synthesis, crystal structure, and phase stability relations of a LiNbO3-type polar titanate ZnTiO3 and its reinforced polarity by the second-order Jahn-Teller effect. , 2014, Journal of the American Chemical Society.

[5]  P. Manuel,et al.  A ferroelectric-like structural transition in a metal. , 2013, Nature materials.

[6]  Y. Matsushita,et al.  High-pressure synthesis, crystal structures, and properties of ScRhO3 and InRhO3 perovskites. , 2013, Inorganic chemistry.

[7]  J. Attfield,et al.  Weak ferromagnetism and domain effects in multiferroic LiNbO 3 -type MnTiO 3 -II , 2013 .

[8]  J. Hadermann,et al.  Polar and magnetic Mn2FeMO6 (M=Nb, Ta) with LiNbO3-type structure: high-pressure synthesis. , 2013, Angewandte Chemie.

[9]  P. Gao,et al.  Synthesis and structure of perovskite ScMnO3. , 2013, Inorganic chemistry.

[10]  Craig J. Fennie,et al.  Why Are There So Few Perovskite Ferroelectrics , 2013, 1307.8103.

[11]  Y. Matsushita,et al.  Crystal Structures and Properties of Perovskites ScCrO3 and InCrO3 with Small Ions at the A Site , 2012 .

[12]  R. Palgrave,et al.  A Polar Corundum Oxide Displaying Weak Ferromagnetism at Room Temperature , 2012, Journal of the American Chemical Society.

[13]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[14]  T. Ohba,et al.  Synthesis, structural transformation, thermal stability, valence state, and magnetic and electronic properties of PbNiO3 with perovskite- and LiNbO3-type structures. , 2011, Journal of the American Chemical Society.

[15]  R. Jeanloz,et al.  Intriguing sequence of GaFeO3 structures and electronic states to 70 GPa , 2011 .

[16]  M. Itoh,et al.  High-pressure synthesis and correlation between structure, magnetic, and dielectric properties in LiNbO(3)-type MnMO3 (M=Ti, Sn). , 2011, Inorganic chemistry.

[17]  E. Takayama-Muromachi,et al.  Perovskite, LiNbO3, corundum, and hexagonal polymorphs of (In(1-x)M(x))MO3. , 2011, Journal of the American Chemical Society.

[18]  M. Alario-Franco,et al.  Highly stable cooperative distortion in a weak Jahn-Teller d2 cation: perovskite-type ScVO3 obtained by high-pressure and high-temperature transformation from bixbyite. , 2011, Journal of the American Chemical Society.

[19]  H. Fjellvåg,et al.  Investigation of bixbyite type scandium oxides involving a magnetic cation: Sc2−xFexO3 (0≤x≤1) , 2011 .

[20]  Y. Matsushita,et al.  Indium-based perovskites: a new class of near-room-temperature multiferroics. , 2009, Angewandte Chemie.

[21]  C. Fennie,et al.  Coexistence of weak ferromagnetism and ferroelectricity in the high pressure LiNbO3-type phase of FeTiO3. , 2009, Physical review letters.

[22]  T. Katsumata,et al.  A polar oxide ZnSnO3 with a LiNbO3-type structure. , 2008, Journal of the American Chemical Society.

[23]  C. Fennie Ferroelectrically induced weak ferromagnetism by design. , 2007, Physical review letters.

[24]  F. Izumi,et al.  Three-Dimensional Visualization in Powder Diffraction , 2007 .

[25]  J. Goodenough,et al.  Orbital ordering in orthorhombic perovskites , 2007 .

[26]  S. Ishiwata,et al.  Designed ferromagnetic, ferroelectric Bi2NiMnO6 , 2005 .

[27]  J. Medvedeva,et al.  Synthesis, Structure, and Properties of New Perovskite PbVO3 , 2004 .

[28]  Yasuhiro Tokura,et al.  Magnetocapacitance effect in multiferroic BiMnO 3 , 2003 .

[29]  R. Ramesh,et al.  Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures , 2003, Science.

[30]  Y. Tokura,et al.  Distorted perovskite witheg1configuration as a frustrated spin system , 2002, cond-mat/0211568.

[31]  Yoshinori Katayama,et al.  High-pressure science with a multi-anvil apparatus at SPring-8 , 2002 .

[32]  Nicola A. Hill,et al.  Why Are There so Few Magnetic Ferroelectrics , 2000 .

[33]  A. Navrotsky Energetics and Crystal Chemical Systematics among Ilmenite, Lithium Niobate, and Perovskite Structures , 1998 .

[34]  J. Parise,et al.  High pressure synthesis of a new chromite, ScCrO3 , 1997 .

[35]  Y. Fei,et al.  Complete Fe-Mg solid solution in lithium niobate and perovskite structures in titanates at high pressures and temperatures , 1997 .

[36]  N. Ishizawa,et al.  Synchrotron X-ray Studies of LiNbO3 and LiTaO3 , 1997 .

[37]  P. Woodward Octahedral Tilting in Perovskites. I. Geometrical Considerations , 1997 .

[38]  K. Leinenweber,et al.  High-pressure perovskites on the join CaTiO3-FeTiO3 , 1995 .

[39]  K. Leinenweber,et al.  Calorimetric study of high pressure polymorphism in FeTiO3: Stability of the perovskite phase , 1994 .

[40]  Nazzal,et al.  Systematic study of insulator-metal transitions in perovskites RNiO3 (R=Pr,Nd,Sm,Eu) due to closing of charge-transfer gap. , 1992, Physical review. B, Condensed matter.

[41]  K. Leinenweber,et al.  Unquenchable high-pressure perovskite polymorphs of MnSnO3 and FeTiO3 , 1991 .

[42]  Russell F. Loane,et al.  Thermal vibrations in convergent‐beam electron diffraction , 1991 .

[43]  H. Schmid,et al.  Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3 , 1990 .

[44]  N. Ross,et al.  A new phase transition in MnTiO3: LiNbO3-perovskite structure , 1989 .

[45]  C. Prewitt,et al.  High-pressure phase transition in MnTiO3 from the ilmenite to the LiNbO3 structure , 1988 .

[46]  I. D. Brown,et al.  Bond‐valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database , 1985 .

[47]  E. Ito,et al.  High-pressure transformations in silicates, germanates, and titanates with ABO3 stoichiometry , 1979 .

[48]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[49]  S. Date,et al.  Mössbauer‐effect study of Co57 and Fe57 impurities in ferroelectric LiNbO3 , 1975 .

[50]  A. M. Glazer,et al.  The classification of tilted octahedra in perovskites , 1972 .

[51]  J. P. Remeika,et al.  The crystal chemistry of the rare earth orthoferrites , 1970 .

[52]  Y. Endoh,et al.  A new high pressure phase of MnTiO3 and its magnetic property , 1969 .

[53]  Y. Syono,et al.  Disordered ilmenite MnSnO3 and its magnetic property , 1969 .

[54]  H. Megaw A note on the structure of lithium niobate, LiNbO3 , 1968 .

[55]  S. Shtrikman,et al.  Mössbauer Studies of Fe 57 in Orthoferrites , 1967 .

[56]  T. Moriya Anisotropic Superexchange Interaction and Weak Ferromagnetism , 1960 .

[57]  E. A. Wood,et al.  Crystallographic studies of perovskite‐like compounds. I. Rare earth orthoferrites and YFeO3, YCrO3, YAlO3 , 1956 .

[58]  M. Azuma,et al.  Crystallographic Features and Tetragonal Phase Stability of PbVO3, a New Member of PbTiO3 Family , 2005 .

[59]  Murli H. Manghnani,et al.  Pressure Measurement at High Temperature in X-Ray Diffraction Studies: Gold as a Primary Standard , 1982 .

[60]  I. Dzyaloshinsky A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics , 1958 .