Entwicklung eines minimal-invasiven Retinaimplantats

ZusammenfassungHintergrundZiel des Projekts ist es, ein minimal-invasives Retinaimplantat-System zu entwickeln, mit dessen Hilfe es erblindeten Patienten mit distalen Netzhautdegenerationen ermöglicht werden soll, Bildinformationen durch kodierte elektrische Stimulation verbliebener Netzhautneurone wahrzunehmen.MethodeDas technologische Konzept des minimal-invasiven Retinaimplantats wurde im Rahmen einer Machbarkeitsstudie entwickelt. Zwei unterschiedliche Serien von Testobjekten wurden entworfen, gefertigt und anschließend in vitro und in vivo erprobt.ErgebnisseAls Resultat des Entwicklungsprozesses wurde ein System konzipiert, bei dem stimulierende Mikroelektroden als einziger Implantatanteil ab externo via Sklera und Aderhaut in das Augeninnere eindringen, während alle weiteren Implantatkomponenten auf der äußeren Skleraoberfläche befestigt werden. Die Elektrodenpenetration sowie die chirurgische Implantationstechnik konnten in mehreren Versuchsserien erfolgreich erprobt werden. Eine langzeitige Bioverträglichkeitsuntersuchung an Primaten wurde mit ersten Testobjekten erfolgreich initiiert.SchlussfolgerungenDie bisher vorliegenden Ergebnisse sprechen für eine technologische Machbarkeit, eine leicht handhabbare chirurgische Anwendungsmöglichkeit und gute langzeitige Bioverträglichkeit des hier konzipierten minimal-invasiven Retinaimplantat-Systems.AbstractPurposeIt was the aim of this project to develop a minimally invasive prosthetic retinal implant system for the rehabilitation of blind patients suffering from distal retinal degenerations. For this purpose, encoded image information will be transferred to surviving retinal neurons by electrical stimulation applied via intraretinal microelectrodes.MethodsThe technological concept was generated in a feasibility study of alternative approaches to minimally invasive retinal prostheses. Then two series of test implants were fabricated and applied in different in vitro- and in vivo- studies before a long-term implantation trial was initiated.ResultsThe conceptual design process was resulting in a system with stimulating microelectrodes penetrating the sclera and choroid ab externo, and with all other implant components in episcleral position. Microelectrode penetration and surgical application techniques were successfully tested in several series of experiments. Finally, a long-term application of test devices was successfully initiated.ConclusionResults so far demonstrate the conceptual feasibility, easy-to-perform surgical application, and long-term biocompatibility of the newly designed minimally invasive retinal implant system.

[1]  J. Weiland,et al.  Visual performance using a retinal prosthesis in three subjects with retinitis pigmentosa. , 2007, American journal of ophthalmology.

[2]  Joseph F Rizzo,et al.  In vivo electrical stimulation of rabbit retina: effect of stimulus duration and electrical field orientation. , 2006, Experimental eye research.

[3]  H. Gerding,et al.  A new approach towards a minimal invasive retina implant , 2007, Journal of neural engineering.

[4]  R. Eckmiller Learning retina implants with epiretinal contacts. , 1997, Ophthalmic research.

[5]  E. Zrenner,et al.  Compound subretinal prostheses with extra-ocular parts designed for human trials: successful long-term implantation in pigs , 2007, Graefe's Archive for Clinical and Experimental Ophthalmology.

[6]  J. Weiland,et al.  Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs. , 1999, Investigative ophthalmology & visual science.

[7]  John W Morley,et al.  Feasibility of extraocular stimulation for a retinal prosthesis. , 2005, Canadian journal of ophthalmology. Journal canadien d'ophtalmologie.

[8]  J. Rizzo,et al.  The Eye and the Chip: World Congress on Artificial Vision 2004 , 2005 .

[9]  H. Gerding,et al.  Development of Microelectronic Visual Implants , 2001 .

[10]  K Heimann,et al.  Successful long-term implantation of electrically inactive epiretinal microelectrode arrays in rabbits. , 1999, Retina.

[11]  P. Walter,et al.  [Epiretinal visual prostheses]. , 2005, Der Ophthalmologe : Zeitschrift der Deutschen Ophthalmologischen Gesellschaft.

[12]  M. Osanai,et al.  Transretinal Electrical Stimulation with a Suprachoroidal Multichannel Electrode in Rabbit Eyes , 2004, Japanese Journal of Ophthalmology.

[13]  Ethan D Cohen,et al.  Prosthetic interfaces with the visual system: biological issues , 2007, Journal of neural engineering.

[14]  John W. Morley,et al.  Evaluation of extraocular electrodes for a retinal prosthesis using evoked potentials in cat visual cortex , 2005, Journal of Clinical Neuroscience.

[15]  Jason Dowling,et al.  Artificial human vision , 2005, Expert review of medical devices.

[16]  J. Weiland,et al.  Retinal prostheses for the blind. , 2006, Annals of the Academy of Medicine, Singapore.

[17]  E. Zrenner Will Retinal Implants Restore Vision ? , 2002 .

[18]  H. Gerding,et al.  Elektrostimulation des visuellen Systems Von therapeutischer Empirie zur Entwicklung von Sehprothesen , 2001, Der Ophthalmologe.

[19]  Mark S Humayun,et al.  Long-term stimulation by active epiretinal implants in normal and RCD1 dogs , 2005, Journal of neural engineering.

[20]  B. Hoefflinger,et al.  The development of subretinal microphotodiodes for replacement of degenerated photoreceptors. , 1997, Ophthalmic research.

[21]  Martin Stelzle,et al.  Biostability of micro-photodiode arrays for subretinal implantation. , 2002, Biomaterials.

[22]  M Pelizzone,et al.  Subretinal electrode implantation in the P23H rat for chronic stimulations , 2006, British Journal of Ophthalmology.

[23]  Joseph F Rizzo,et al.  Comparison of electrically evoked cortical potential thresholds generated with subretinal or suprachoroidal placement of a microelectrode array in the rabbit , 2005, Journal of neural engineering.

[24]  Rolf Eckmiller,et al.  Tunable retina encoders for retina implants: why and how , 2005, Journal of neural engineering.

[25]  Thomas Schanze,et al.  Transscleral implantation and neurophysiological testing of subretinal polyimide film electrodes in the domestic pig in visual prosthesis development , 2005, Journal of neural engineering.

[26]  G. Brindley,et al.  The site of electrical excitation of the human eye , 1955, The Journal of physiology.

[27]  M. Schubert,et al.  Subretinales Mikrophotodioden-Array als Ersatz für degenerierte Photorezeptoren? , 2001, Der Ophthalmologe.

[28]  Joseph F Rizzo,et al.  Biocompatibility of materials implanted into the subretinal space of Yucatan pigs. , 2006, Investigative ophthalmology & visual science.

[29]  Gislin Dagnelie,et al.  Visual perception in a blind subject with a chronic microelectronic retinal prosthesis , 2003, Vision Research.

[30]  Y. Tano,et al.  Evaluation of phosphenes elicited by extraocular stimulation in normals and by suprachoroidal-transretinal stimulation in patients with retinitis pigmentosa , 2007, Graefe's Archive for Clinical and Experimental Ophthalmology.

[31]  F. Gekeler,et al.  Stand des subretinalen Implantatprojekts , 2005, Der Ophthalmologe.

[32]  Tassicker Ge Preliminary report on a retinal stimulator. , 1956 .

[33]  H. Gerding,et al.  Successful long-term evaluation of intraocular titanium tacks for the mechanical stabilization of posterior segment ocular implants , 2001 .

[34]  I. Wickelgren A Vision for the Blind , 2006, Science.

[35]  J. Wyatt,et al.  REVIEW ■ : Prospects for a Visual Prosthesis , 1997 .

[36]  Xiao-Xin Li,et al.  Effects of subretinal implant materials on the viability, apoptosis and barrier function of cultured RPE cells , 2006, Graefe's Archive for Clinical and Experimental Ophthalmology.

[37]  DEVELOPMENT OF A WIRELESS, AB EXTERNO RETINAL PROSTHESIS , 2004 .

[38]  H. Gerding The Minimally Invasive Retina Implant Project , 2007 .

[39]  H. Gerding,et al.  Experimental implantation of epiretinal retina implants (EPI-RET) with an IOL-type receiver unit , 2007, Journal of neural engineering.