Efficient bayesian hierarchical user modeling for recommendation system

A content-based personalized recommendation system learns user specific profiles from user feedback so that it can deliver information tailored to each individual user's interest. A system serving millions of users can learn a better user profile for a new user, or a user with little feedback, by borrowing information from other users through the use of a Bayesian hierarchical model. Learning the model parameters to optimize the joint data likelihood from millions of users is very computationally expensive. The commonly used EM algorithm converges very slowly due to the sparseness of the data in IR applications. This paper proposes a new fast learning technique to learn a large number of individual user profiles. The efficacy and efficiency of the proposed algorithm are justified by theory and demonstrated on actual user data from Netflix and MovieLens.

[1]  Stephen E. Robertson,et al.  Relevance weighting of search terms , 1976, J. Am. Soc. Inf. Sci..

[2]  Editors , 1986, Brain Research Bulletin.

[3]  James P. Callan,et al.  Document filtering with inference networks , 1996, SIGIR '96.

[4]  Bradley N. Miller,et al.  GroupLens: applying collaborative filtering to Usenet news , 1997, CACM.

[5]  David Heckerman,et al.  Empirical Analysis of Predictive Algorithms for Collaborative Filtering , 1998, UAI.

[6]  William W. Cohen,et al.  Recommendation as Classification: Using Social and Content-Based Information in Recommendation , 1998, AAAI/IAAI.

[7]  John Riedl,et al.  An algorithmic framework for performing collaborative filtering , 1999, SIGIR '99.

[8]  Naohiro Ishii,et al.  Memory-Based Weighted-Majority Prediction for Recommender Systems , 1999, SIGIR 1999.

[9]  Thomas Hofmann,et al.  Latent Class Models for Collaborative Filtering , 1999, IJCAI.

[10]  David D. Lewis,et al.  Applying Support Vector Machines to the TREC-2001 Batch Filtering and Routing Tasks , 2001, TREC.

[11]  Raymond J. Mooney,et al.  Content-boosted collaborative filtering for improved recommendations , 2002, AAAI/IAAI.

[12]  W. Bruce Croft,et al.  Language Modeling for Information Retrieval , 2010, The Springer International Series on Information Retrieval.

[13]  Philip S. Yu,et al.  Text Classification by Labeling Words , 2004, AAAI.

[14]  Rohini K. Srihari,et al.  Incorporating prior knowledge with weighted margin support vector machines , 2004, KDD.

[15]  Volker Tresp,et al.  A nonparametric hierarchical bayesian framework for information filtering , 2004, SIGIR '04.

[16]  Alex Acero,et al.  Adaptation of Maximum Entropy Capitalizer: Little Data Can Help a Lo , 2006, Comput. Speech Lang..

[17]  Luo Si,et al.  An automatic weighting scheme for collaborative filtering , 2004, SIGIR '04.

[18]  Anton Schwaighofer,et al.  Learning Gaussian processes from multiple tasks , 2005, ICML.

[19]  Yiming Yang,et al.  Robustness of adaptive filtering methods in a cross-benchmark evaluation , 2005, SIGIR '05.

[20]  Xiaojin Zhu,et al.  --1 CONTENTS , 2006 .

[21]  Jun Wang,et al.  Unifying user-based and item-based collaborative filtering approaches by similarity fusion , 2006, SIGIR.

[22]  David Madigan,et al.  Constructing informative prior distributions from domain knowledge in text classification , 2006, SIGIR.

[23]  Yi Zhang,et al.  Bayesian adaptive user profiling with explicit & implicit feedback , 2006, CIKM '06.

[24]  David Heckerman,et al.  A Tutorial on Learning with Bayesian Networks , 1999, Innovations in Bayesian Networks.