A heuristic framework for the bi-objective enhanced index tracking problem

Abstract The index tracking problem is the problem of determining a portfolio of assets whose performance replicates, as closely as possible, that of a financial market index chosen as benchmark. In the enhanced index tracking problem the portfolio is expected to outperform the benchmark with minimal additional risk. In this paper, we study the bi-objective enhanced index tracking problem where two competing objectives, i.e., the expected excess return of the portfolio over the benchmark and the tracking error, are taken into consideration. A bi-objective Mixed Integer Linear Programming formulation for the problem is proposed. Computational results on a set of benchmark instances are given, along with a detailed out-of-sample analysis of the performance of the optimal portfolios selected by the proposed model. Then, a heuristic procedure is designed to build an approximation of the set of Pareto optimal solutions. We test the proposed procedure on a reference set of Pareto optimal solutions. Computational results show that the procedure is significantly faster than the exact computation and provides an extremely accurate approximation.

[1]  Refail Kasimbeyli,et al.  Multiobjective Programming and Multiattribute Utility Functions in Portfolio Optimization , 2009, INFOR Inf. Syst. Oper. Res..

[2]  Matthias Ehrgott,et al.  Multicriteria Optimization , 2005 .

[3]  Miguel A. Lejeune,et al.  Game Theoretical Approach for Reliable Enhanced Indexation , 2012, Decis. Anal..

[4]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[5]  Michael Doumpos,et al.  Portfolio optimization and index tracking for the shipping stock and freight markets using evolutionary algorithms , 2013 .

[6]  Thomas R. Stidsen,et al.  A Branch and Bound Algorithm for a Class of Biobjective Mixed Integer Programs , 2014, Manag. Sci..

[7]  Konstantinos Liagkouras,et al.  Multiobjective Evolutionary Algorithms for Portfolio Management: A comprehensive literature review , 2012, Expert Syst. Appl..

[8]  Alex Frino,et al.  The Index Tracking Strategies of Passive and Enhanced Index Equity Funds , 2005 .

[9]  Yue Qi,et al.  Computing the Nondominated Surface in Tri-Criterion Portfolio Selection , 2013, Oper. Res..

[10]  Kay Chen Tan,et al.  Evolutionary multi-objective portfolio optimization in practical context , 2008, Int. J. Autom. Comput..

[11]  Maria Grazia Speranza,et al.  On the effectiveness of scenario generation techniques in single-period portfolio optimization , 2009, Eur. J. Oper. Res..

[12]  John E. Beasley,et al.  Portfolio Optimisation: Models and Solution Approaches , 2013 .

[13]  Rajendra S. Solanki,et al.  Generating the noninferior set in mixed integer biobjective linear programs: An application to a location problem , 1991, Comput. Oper. Res..

[14]  George Mavrotas,et al.  A branch and bound algorithm for mixed zero-one multiple objective linear programming , 1998, Eur. J. Oper. Res..

[15]  Dietmar Maringer,et al.  Index tracking with constrained portfolios , 2007, Intell. Syst. Account. Finance Manag..

[16]  John E. Beasley,et al.  An evolutionary heuristic for the index tracking problem , 2003, Eur. J. Oper. Res..

[17]  Anthony Przybylski,et al.  Multiple objective branch and bound for mixed 0-1 linear programming: Corrections and improvements for the biobjective case , 2013, Comput. Oper. Res..

[18]  J. Beasley,et al.  Portfolio rebalancing with an investment horizon and transaction costs , 2013 .

[19]  George Mavrotas,et al.  Multi-criteria branch and bound: A vector maximization algorithm for Mixed 0-1 Multiple Objective Linear Programming , 2005, Appl. Math. Comput..

[20]  Cemal Berk Oğuzsoy,et al.  Robust portfolio planning in the presence of market anomalies , 2007 .

[21]  John E. Beasley,et al.  Quantile regression for index tracking and enhanced indexation , 2013, J. Oper. Res. Soc..

[22]  Qian Li,et al.  Enhanced index tracking based on multi-objective immune algorithm , 2011, Expert Syst. Appl..

[23]  John E. Beasley,et al.  Mixed-integer programming approaches for index tracking and enhanced indexation , 2009, Eur. J. Oper. Res..

[24]  R. Korn,et al.  Optimal index tracking under transac-tion costs and impulse control , 1998 .

[25]  Maria Grazia Speranza,et al.  Kernel search: A general heuristic for the multi-dimensional knapsack problem , 2010, Comput. Oper. Res..

[26]  John E. Beasley,et al.  Absolute return portfolios , 2014 .

[27]  Maria Grazia Speranza,et al.  Kernel Search: a new heuristic framework for portfolio selection , 2012, Comput. Optim. Appl..

[28]  Miguel A. Lejeune,et al.  Construction of Risk-Averse Enhanced Index Funds , 2010, INFORMS J. Comput..

[29]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[30]  Chang-Chun Lin,et al.  Genetic algorithms for portfolio selection problems with minimum transaction lots , 2008, Eur. J. Oper. Res..

[31]  Martin J. Gruber,et al.  Another puzzle: the growth in actively managed mutual funds , 1996, Annals of Operations Research.

[32]  John E. Beasley,et al.  Index tracking with fixed and variable transaction costs , 2012, Optimization Letters.

[33]  Yacov Y. Haimes,et al.  Multiobjective Decision Making: Theory and Methodology , 1983 .

[34]  Chorng-Shyong Ong,et al.  Enhanced Index Investing Based on Goal Programming , 2007 .

[35]  Dietmar Maringer,et al.  Metaheuristics for the Index Tracking Problem , 2009 .

[36]  João C. N. Clímaco,et al.  A review of interactive methods for multiobjective integer and mixed-integer programming , 2007, Eur. J. Oper. Res..

[37]  R. Mansini,et al.  Models and Simulations for Portfolio Rebalancing , 2009 .

[38]  Konstantinos P. Anagnostopoulos,et al.  A portfolio optimization model with three objectives and discrete variables , 2010, Comput. Oper. Res..

[39]  Abdullah Al Mamun,et al.  Dynamic index tracking via multi-objective evolutionary algorithm , 2013, Appl. Soft Comput..

[40]  Murat Köksalan,et al.  An Exact Algorithm for Finding Extreme Supported Nondominated Points of Multiobjective Mixed Integer Programs , 2010, Manag. Sci..

[41]  Gautam Mitra,et al.  A review of portfolio planning: Models and systems , 2003 .

[42]  Carlo Filippi,et al.  Approximation schemes for bi-objective combinatorial optimization and their application to the TSP with profits , 2013, Computers & Operations Research.

[43]  L. J. Gitman,et al.  Fundamentals of Investing , 1981 .

[44]  Andrzej Jaszkiewicz,et al.  Evaluation of Multiple Objective Metaheuristics , 2004, Metaheuristics for Multiobjective Optimisation.

[45]  João C. N. Clímaco,et al.  An interactive reference point approach for multiobjective mixed-integer programming using branch-and-bound , 2000, Eur. J. Oper. Res..

[46]  Gautam Mitra,et al.  Enhanced indexation based on second-order stochastic dominance , 2013, Eur. J. Oper. Res..

[47]  S. Ruzika,et al.  Approximation Methods in Multiobjective Programming , 2005 .

[48]  Maria Grazia Speranza,et al.  Kernel Search: An application to the index tracking problem , 2012, Eur. J. Oper. Res..

[49]  Maria Grazia Speranza,et al.  Kernel search for the capacitated facility location problem , 2012, J. Heuristics.

[50]  Maria Grazia Speranza,et al.  A heuristic for BILP problems: The Single Source Capacitated Facility Location Problem , 2014, Eur. J. Oper. Res..