Spirochetes and salt marsh microbial mat geochemistry: Implications for the fossil record

Microbial mats are synergistic microbial consortia through which major elements, including sulfur, are cycled due to microbial and geological processes. Depth profiles of pH, O2, sulfide, exopolymeric substances (EPS), and the rate of sulfate reduction were determined in an Oscillatoria sp. and Microcoleus-dominated marine microbial mat at the Great Sippewissett salt marsh, Massachusetts. In addition, measurements in spirochete enrichments and Spirochaetae litoralis cultures showed sulfide consumption during which polysulfides, thiosulfate, and presumably sulfate formed. These data suggest that spirochetes can play a role in the cycling of sulfur in these mats. The obligate to facultative anaerobic spirochetes may consume sulfide to remove oxygen. Furthermore, spirochetes may enhance preservation of microbial mats within the rock record by degrading EPS and producing low molecular weight organic compounds (LMWOC). Both sulfide oxidation (i.e., oxygen removal) and EPS degradation (i.e., production of LMW organic compounds) stimulate the activity of sulfate-reducing bacteria (SRB), which are responsible for the precipitation of calcium carbonate in most lithifying mats

[1]  A. Reimer,et al.  Photosynthesis-Induced Biofilm Calcification and Calcium Concentrations in Phanerozoic Oceans , 2001, Science.

[2]  S. Leschine,et al.  Rifampin as a Selective Agent for Isolation of Oral Spirochetes , 1980, Journal of clinical microbiology.

[3]  P. Visscher,et al.  Lithifying microbial mats in Lagoa Vermelha, Brazil: Modern Precambrian relics? , 2006 .

[4]  P. Visscher,et al.  Polysulfide utilization by Thiocapsa roseopersicina , 1990, Archives of Microbiology.

[5]  C. Harwood,et al.  Ecology of spirochetes. , 1984, Annual review of microbiology.

[6]  H. Paerl,et al.  Nitrogen cycling in microbial mat communities: The quantitative importance of N-fixation and other sources of N for primary productivity , 1994 .

[7]  P. Visscher,et al.  Low-Molecular-Weight Sulfonates, a Major Substrate for Sulfate Reducers in Marine Microbial Mats , 1999, Applied and Environmental Microbiology.

[8]  B Kremer,et al.  Calcium carbonate precipitation in cyanobacterial mats from sandy tidal flats of the North Sea , 2007, Geobiology.

[9]  P. Visscher,et al.  Vertical distribution of methane metabolism in microbial mats of the Great Sippewissett Salt Marsh. , 2008, Environmental microbiology.

[10]  P. Armstrong,et al.  Calcification of cyanobacterial mats in Solar Lake, Sinai , 1984 .

[11]  K. Nealson,et al.  Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. , 1994, Annual review of microbiology.

[12]  R. Amann,et al.  Coexistence of Bacterial Sulfide Oxidizers, Sulfate Reducers, and Spirochetes in a Gutless Worm (Oligochaeta) from the Peru Margin , 2005, Applied and Environmental Microbiology.

[13]  S. Giovannoni,et al.  The microbial community in the layered sediments at Laguna Figueroa, Baja California, Mexico: Does it have Precambrian analogues? , 1980 .

[14]  M. Schidlowski A 3,800-million-year isotopic record of life from carbon in sedimentary rocks , 1988, Nature.

[15]  Alice L. Alldredge,et al.  A dye-binding assay for the spectrophotometric measurement of transparent exopolymer particles (TEP) , 1995 .

[16]  R. Reid,et al.  Microscale observations of sulfate reduction: Correlation of microbial activity with lithified micritic laminae in modern marine stromatolites , 2000 .

[17]  The role of oxygen in the regulation of the metabolism of aerotolerant spirochetes, a major component of “Thiodendron” bacterial sulfur mats , 2004, Microbiology.

[18]  E. Canale-Parola Free-Living Saccharolytic Spirochetes: The Genus Spirochaeta , 1992 .

[19]  M. Tice Palaeontology: Modern life in ancient mats , 2008, Nature.

[20]  G. Murphy,et al.  Pigments, light penetration, and photosynthetic activity in the multi‐layered microbial mats of Great Sippewissett Salt Marsh, Massachusetts , 1987 .

[21]  H. Paerl,et al.  The role of microbes in accretion, lamination and early lithification of modern marine stromatolites , 2000, Nature.

[22]  H. Gemerden Microbial mats: A joint venture , 1993 .

[23]  Michael A. Peterson,et al.  Hydrogen sulfide consumption measured at low steady state concentrations using a sulfidostat. , 2004, Analytical biochemistry.

[24]  P. Visscher,et al.  Community Structure, Geochemical Characteristics and Mineralogy of a Hypersaline Microbial Mat, Cabo Rojo, PR , 2005 .

[25]  L. Margulis,et al.  Cosmopolitan distribution of the large composite microbial mat spirochete, Spirosymplokos deltaeiberi. , 1998, International microbiology : the official journal of the Spanish Society for Microbiology.

[26]  Yumiko Watanabe,et al.  Geochemical evidence for terrestrial ecosystems 2.6 billion years ago , 2000, Nature.

[27]  P. Visscher,et al.  Microbial lithification in marine stromatolites and hypersaline mats. , 2005, Trends in microbiology.

[28]  J. Leadbetter,et al.  Acetogenesis from H2 plus CO2 by spirochetes from termite guts. , 1999, Science.

[29]  N. Noffke Microbially Induced Sedimentary Structures , 2021, Encyclopedia of Astrobiology.

[30]  Pieter T. Visscher,et al.  Microbe–mineral interactions: early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas) , 2004 .

[31]  Robert Riding,et al.  Microbial carbonates: the geological record of calcified bacterial–algal mats and biofilms , 2000 .

[32]  C. Woese,et al.  Phylogenetic analysis of the spirochetes , 1991, Journal of bacteriology.

[33]  P. Garrett Phanerozoic Stromatolites: Noncompetitive Ecologic Restriction by Grazing and Burrowing Animals , 1970, Science.

[34]  Michael Rothrock,et al.  Long-term manipulations of intact microbial mat communities in a greenhouse collaboratory: simulating earth's present and past field environments. , 2013, Astrobiology.

[35]  D. D. Marais The biogeochemistry of hypersaline microbial mats. , 1995 .

[36]  H. Chafetz,et al.  Bacterially Induced Lithification of Microbial Mats , 1992 .

[37]  P. Visscher,et al.  Enumeration of bacteria which cleave or demethylate dimethylsulfoniopropionate in the Caribbean Sea , 1992 .

[38]  K. D. McKeegan,et al.  Evidence for life on Earth before 3,800 million years ago , 1996, Nature.

[39]  Scott R. Miller,et al.  Unexpected Diversity and Complexity of the Guerrero Negro Hypersaline Microbial Mat , 2006, Applied and Environmental Microbiology.

[40]  D. D. Des Marais The biogeochemistry of hypersaline microbial mats. , 1995, Advances in microbial ecology.

[41]  S. Holt Anatomy and chemistry of spirochetes , 1978, Microbiological reviews.

[42]  R. Reid,et al.  Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite , 2005 .

[43]  D. Canfield,et al.  Biogeochemical cycles of carbon, sulfur, and free oxygen in a microbial mat , 1993, Geochimica et cosmochimica acta.

[44]  A. Kamp,et al.  Anaerobic Sulfide Oxidation with Nitrate by a Freshwater Beggiatoa Enrichment Culture , 2006, Applied and Environmental Microbiology.

[45]  W. Krumbein Chapter 2.2 Calcification by Bacteria and Algae , 1979 .

[46]  J. Beukema,et al.  In situ characterization of sediments: Measurements of oxygen and sulfide profiles with a novel combined needle electrode , 1991 .

[47]  P. Hoffman Algal Stromatolites: Use in Stratigraphic Correlation and Paleocurrent Determination , 1967, Science.

[48]  A. Decho Exopolymer Microdomains as a Structuring Agent for Heterogeneity Within Microbial Biofilms , 2000 .

[49]  R. B. Hespell,et al.  Spirochaeta litoralis sp. n., a strictly anaerobic marine spirochete , 1970, Archiv für Mikrobiologie.

[50]  D. Lovley,et al.  Carbohydrate oxidation coupled to Fe(III) reduction, a novel form of anaerobic metabolism. , 1998, Anaerobe.

[51]  Olivier Braissant,et al.  Exopolymeric substances of sulfate‐reducing bacteria: Interactions with calcium at alkaline pH and implication for formation of carbonate minerals , 2007 .

[52]  J. Schopf,et al.  Microfossils of the Early Archean Apex Chert: New Evidence of the Antiquity of Life , 1993, Science.

[53]  P. Visscher,et al.  Microbial mats as bioreactors: populations, processes, and products , 2005 .

[54]  R. Guerrero,et al.  Diel cycle of metabolism of phototrophic purple sulfur bacteria in Lake Cisó (Spain) , 1985 .

[55]  H. Jonkers,et al.  In situ fluctuations of oxygen and sulphide in marine microbial sediment ecosystems , 1989 .

[56]  Wolfgang E. Krumbein,et al.  Microbially Induced Sedimentary Structures: A New Category within the Classification of Primary Sedimentary Structures , 2001 .

[57]  John F. Stolz,et al.  Structure of a microbiol mat at Great Sippewissett Marsh, Cape Cod, Massachusetts , 1987 .

[58]  R. Reid,et al.  Sulfate reducing bacteria in microbial mats: Changing paradigms, new discoveries , 2006 .

[59]  Henry L. Ehrlich,et al.  HOW MICROBES INFLUENCE MINERAL GROWTH AND DISSOLUTION , 1996 .

[60]  B. Paster,et al.  Physiological diversity of rumen spirochetes , 1982, Applied and environmental microbiology.

[61]  G. Friedman Formation of lithified micritic laminae in modern marine stromatolites: From study of Red Sea stromatolites: Perspective , 2000, Carbonates and Evaporites.

[62]  C. Harwood,et al.  Branched-Chain Amino Acid Fermentation by a Marine Spirochete: Strategy for Starvation Survival , 1981, Journal of bacteriology.

[63]  E. Greenberg,et al.  Motility of flagellated bacteria in viscous environments , 1977, Journal of bacteriology.