Global Validation of Linear Model Assumptions
暂无分享,去创建一个
[1] J. Tukey. One Degree of Freedom for Non-Additivity , 1949 .
[2] J. Schmee. An Introduction to Multivariate Statistical Analysis , 1986 .
[3] S. Weisberg,et al. Residuals and Influence in Regression , 1982 .
[4] T. W. Anderson. An Introduction to Multivariate Statistical Analysis, 2nd Edition. , 1985 .
[5] R. Cook. Detection of influential observation in linear regression , 2000 .
[6] N. Hjort,et al. Frequentist Model Average Estimators , 2003 .
[7] S. Weisberg,et al. Diagnostics for heteroscedasticity in regression , 1983 .
[8] A. Hossain,et al. A comparative study on detection of influential observations in linear regression , 1991 .
[9] Ross Ihaka,et al. Gentleman R: R: A language for data analysis and graphics , 1996 .
[10] John C. W. Rayner,et al. Smooth test of goodness of fit , 1989 .
[11] J. Durbin,et al. Testing for serial correlation in least squares regression. I. , 1950, Biometrika.
[12] H. Theil,et al. Testing the Independence of Regression Disturbances , 1961 .
[13] F. J. Anscombe,et al. The Examination and Analysis of Residuals , 1963 .
[14] D. Ruppert,et al. Trimmed Least Squares Estimation in the Linear Model , 1980 .
[15] N. Hjort,et al. The Focused Information Criterion , 2003 .
[16] Chan‐Fu Chen,et al. Score Tests for Regression Models , 1983 .
[17] William H. Swallow,et al. A review of the development and application of recursive residuals in linear models , 1996 .
[18] D. Cox,et al. An Analysis of Transformations , 1964 .
[19] H. Akaike,et al. Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .
[20] Olivier Thas,et al. Smooth tests of goodness of fit , 1989 .
[21] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[22] D. Pierce. The Asymptotic Effect of Substituting Estimators for Parameters in Certain Types of Statistics , 1982 .
[23] D. F. Andrews,et al. Significance tests based on residuals , 1971 .
[24] H. Theil. The Analysis of Disturbances in Regression Analysis , 1965 .
[25] John C. W. Rayner,et al. Neyman-type smooth tests for location-scale families , 1986 .
[26] P. Bickel,et al. Using Residuals Robustly I: Tests for Heteroscedasticity, Nonlinearity , 1975 .
[27] Chan‐Fu Chen,et al. Robustness Aspects of Score Tests for Generalized Linear and Partially Linear Regression Models , 1985 .
[28] Edsel A. Peña,et al. Variance Estimation in a Model With Gaussian Submodels , 2005, Journal of the American Statistical Association.
[29] J. Durbin,et al. Testing for serial correlation in least squares regression. II. , 1950, Biometrika.
[30] E. J. Hannan. TESTING FOR SERIAL CORRELATION IN LEAST SQUARES REGRESSION , 1957 .
[31] Nils Lid Hjort,et al. Discussion: Rejoinder to 'The focussed information criterion' and 'Frequentist model averaging' , 2003 .
[32] V. Barnett,et al. Applied Linear Statistical Models , 1975 .
[33] John W. Tukey,et al. Exploratory Data Analysis. , 1979 .
[34] R. Cook. Regression Graphics , 1994 .
[35] Donald A. Pierce,et al. Neyman's Smooth Goodness-of-Fit Test When the Hypothesis Is Composite , 1979 .
[36] F. J. Anscombe,et al. Examination of Residuals , 1961 .
[37] J. Doornik,et al. An Omnibus Test for Univariate and Multivariate Normality , 2008 .