Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction

Abstract We study radially symmetric solutions of a class of chemotaxis systems generalizing the prototype { u t = Δ u − χ ∇ ⋅ ( u ∇ v ) + λ u − μ u κ , x ∈ Ω , t > 0 , 0 = Δ v − m ( t ) + u , x ∈ Ω , t > 0 , in a ball Ω ⊂ R n , with parameters χ > 0 , λ ⩾ 0 , μ ⩾ 0 and κ > 1 , and m ( t ) : = 1 | Ω | ∫ Ω u ( x , t ) d x . It is shown that when n ⩾ 5 and κ 3 2 + 1 2 n − 2 , then there exist initial data such that the smooth local-in-time solution of (⋆) blows up in finite time. This indicates that even superlinear growth restrictions may be insufficient to rule out a chemotactic collapse, as is known to occur in the corresponding system without any proliferation.

[1]  Kevin J. Painter,et al.  Spatio-temporal chaos in a chemotaxis model , 2011 .

[2]  W. Jäger,et al.  On explosions of solutions to a system of partial differential equations modelling chemotaxis , 1992 .

[3]  Piotr Biler,et al.  LOCAL AND GLOBAL SOLVABILITY OF SOME PARABOLIC SYSTEMS MODELLING CHEMOTAXIS , 1998 .

[4]  Toshitaka Nagai,et al.  Blowup of nonradial solutions to parabolic–elliptic systems modeling chemotaxis in two-dimensional domains , 2001 .

[5]  Mariya Ptashnyk,et al.  BOUNDEDNESS OF SOLUTIONS OF A HAPTOTAXIS MODEL , 2010 .

[6]  Michael Winkler,et al.  Finite-time blow-up in a quasilinear system of chemotaxis , 2008 .

[7]  Michael Winkler,et al.  Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model , 2010 .

[8]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[9]  Dariusz Wrzosek,et al.  Long-time behaviour of solutions to a chemotaxis model with volume-filling effect , 2006, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[10]  Michael Winkler,et al.  Chemotaxis with logistic source : Very weak global solutions and their boundedness properties , 2008 .

[11]  M. Efendiev,et al.  On a new dimension estimate of the global attractor for chemotaxis-growth systems , 2008 .

[12]  W. Wendland,et al.  Uniform estimate of dimension of the global attractor for a semi-discretized chemotaxis-growth system , 2007 .

[13]  Tohru Tsujikawa,et al.  Exponential attractor for a chemotaxis-growth system of equations , 2002 .

[14]  Michael Winkler,et al.  Boundedness in the Higher-Dimensional Parabolic-Parabolic Chemotaxis System with Logistic Source , 2010 .

[15]  K. Painter,et al.  A User's Guide to Pde Models for Chemotaxis , 2022 .

[16]  Dirk Horstmann,et al.  Boundedness vs. blow-up in a chemotaxis system , 2005 .

[17]  M. A. Herrero,et al.  A blow-up mechanism for a chemotaxis model , 1997 .

[18]  Koichi Osaki,et al.  Global existence of solutions to a parabolicparabolic system for chemotaxis with weak degradation , 2011 .

[19]  Philippe Laurenccot,et al.  Finite time blow-up for a one-dimensional quasilinear parabolic–parabolic chemotaxis system , 2008, 0810.3369.

[20]  B. Perthame Transport Equations in Biology , 2006 .

[21]  L. Segel,et al.  Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.

[22]  Takasi Senba,et al.  Type II blowup of solutions to a simplified Keller–Segel system in two dimensional domains , 2007 .

[23]  Michael Winkler,et al.  Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect , 2010 .

[24]  Dirk Horstmann,et al.  Blow-up in a chemotaxis model without symmetry assumptions , 2001, European Journal of Applied Mathematics.

[25]  Michael Winkler,et al.  A Chemotaxis System with Logistic Source , 2007 .