Invariant of dynamical systems: A generalized entropy

In this work the concept of entropy of a dynamical system, as given by Kolmogorov, is generalized in the sense of Tsallis. It is shown that this entropy is an isomorphism invariant, being complete for Bernoulli schemes.

[1]  Boghosian Thermodynamic description of the relaxation of two-dimensional turbulence using Tsallis statistics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[2]  C. Tsallis,et al.  Statistical-mechanical foundation of the ubiquity of Lévy distributions in Nature. , 1995, Physical review letters.

[3]  D. Ornstein Bernoulli shifts with the same entropy are isomorphic , 1970 .

[4]  A. R. Plastino,et al.  Stellar polytropes and Tsallis' entropy , 1993 .

[5]  A. R. Plastino,et al.  Tsallis' entropy, Ehrenfest theorem and information theory , 1993 .

[6]  Damián H. Zanette Generalized Kolmogorov entropy in the dynamics of multifractal generation , 1996 .

[7]  Straub,et al.  Generalized simulated annealing algorithms using Tsallis statistics: Application to conformational optimization of a tetrapeptide. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[8]  Zanette,et al.  Thermodynamics of anomalous diffusion. , 1995, Physical review letters.

[9]  A. Manning,et al.  Ergodic theory, symbolic dynamics, and hyperbolic spaces , 1991 .

[10]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[11]  Rajagopal Dynamic linear response theory for a nonextensive system based on the Tsallis prescription. , 1996, Physical review letters.

[12]  G. Kaniadakis,et al.  Generalized statistics and solar neutrinos , 1996 .

[13]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[14]  Meir Smorodinsky,et al.  Bernoulli schemes of the same entropy are finitarily isomorphic , 1979 .