Geometrical Recombination Operators for Real-Coded Evolutionary MCMCs
暂无分享,去创建一个
[1] C. Braak,et al. Genetic algorithms and Markov Chain Monte Carlo: Differential Evolution Markov Chain makes Bayesian computing easy , 2004 .
[2] L. Tierney. Markov Chains for Exploring Posterior Distributions , 1994 .
[3] D. Wolpert,et al. Adaptive Metropolis Sampling and Optimization with Product Distributions , 2005 .
[4] Nicholas J. Radcliffe,et al. Forma Analysis and Random Respectful Recombination , 1991, ICGA.
[5] A. Gelman,et al. Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .
[6] F. A. Seiler,et al. Numerical Recipes in C: The Art of Scientific Computing , 1989 .
[7] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[8] William H. Press,et al. Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .
[9] Peter Green,et al. Markov chain Monte Carlo in Practice , 1996 .
[10] C.J.F. ter Braak,et al. Genetic algorithms and Markov Chain Monte Carlo: Differential Evolution Markov Chain makes Bayesian computing easy (revised) , 2004 .
[11] Cajo J. F. ter Braak,et al. A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces , 2006, Stat. Comput..
[12] Nando de Freitas,et al. An Introduction to MCMC for Machine Learning , 2004, Machine Learning.
[13] W. Wong,et al. Real-Parameter Evolutionary Monte Carlo With Applications to Bayesian Mixture Models , 2001 .
[14] Dirk Thierens,et al. Recombinative EMCMC algorithms , 2005, 2005 IEEE Congress on Evolutionary Computation.
[15] Stephen P. Brooks,et al. Markov chain Monte Carlo method and its application , 1998 .
[16] David J. C. MacKay,et al. Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.
[17] Geoffrey E. Hinton,et al. Bayesian Learning for Neural Networks , 1995 .
[18] John A. Nelder,et al. A Simplex Method for Function Minimization , 1965, Comput. J..
[19] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[20] Walter R. Gilks,et al. Strategies for improving MCMC , 1995 .
[21] Kalyanmoy Deb,et al. A Computationally Efficient Evolutionary Algorithm for Real-Parameter Optimization , 2002, Evolutionary Computation.
[22] William H. Press,et al. The Art of Scientific Computing Second Edition , 1998 .
[23] Rainer Storn,et al. Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..
[24] Dirk Thierens,et al. Evolutionary Markov Chain Monte Carlo , 2003, Artificial Evolution.
[25] Malcolm J. A. Strens,et al. Markov Chain Monte Carlo Sampling using Direct Search Optimization , 2002, ICML.
[26] Herman K. van Dijk,et al. Adaptive Polar Sampling , 2002 .