Mixture models in econometric duration analysis

Econometric duration analysis has become an important part of methodology in econometrics, bringing forth a plenty of applications. The probability distribution of the duration of a time span is modelled through its conditional hazard rate given the covariates. When some of the covariates are unobservable, the duration, given the observable covariates, has a mixture distribution. The paper surveys and discusses recent developments in the specification, estimation, diagnosis and economic application of proportional hazard models with unobservables. Copyright © 2003 John Wiley & Sons, Ltd.

[1]  J. Boag,et al.  Maximum Likelihood Estimates of the Proportion of Patients Cured by Cancer Therapy , 1949 .

[2]  D. Cox Regression Models and Life-Tables , 1972 .

[3]  O. Aalen Nonparametric Inference for a Family of Counting Processes , 1978 .

[4]  Tony Lancaster,et al.  ECONOMETRIC METHODS FOR THE DURATION OF UNEMPLOYMENT , 1979 .

[5]  David R. Cox A note on the graphical analysis of survival data , 1979 .

[6]  Moshe Shared,et al.  On Mixtures from Exponential Families , 1980 .

[7]  Rupert G. Miller,et al.  Survival Analysis , 2022, The SAGE Encyclopedia of Research Design.

[8]  Chris Elbers,et al.  True and Spurious Duration Dependence: The Identifiability of the Proportional Hazard Model , 1982 .

[9]  J. Heckman,et al.  New Methods for Analyzing Structural Models of Labor Force Dynamics , 1982 .

[10]  James J. Heckman,et al.  Advances in Econometrics: The identification problem in econometric models for duration data , 1983 .

[11]  S. Bennett,et al.  Analysis of survival data by the proportional odds model. , 1983, Statistics in medicine.

[12]  Paul Taubman,et al.  An Analysis of the Health and Retirement Status of the Elderly , 1984 .

[13]  J. Heckman,et al.  A Method for Minimizing the Impact of Distributional Assumptions in Econometric Models for Duration Data , 1984 .

[14]  J. Heckman,et al.  The Identifiability of the Proportional Hazard Model , 1984 .

[15]  John Kennan,et al.  The duration of contract strikes in U.S. manufacturing , 1985 .

[16]  Bruce D. Meyer Unemployment Insurance and Unemployment Spells , 1988 .

[17]  J J Heckman,et al.  Estimating fecundability from data on waiting times to first conception. , 1990, Journal of the American Statistical Association.

[18]  Tony Lancaster,et al.  The Econometric Analysis of Transition Data. , 1992 .

[19]  Sanjiv Jaggia,et al.  Specification Tests Based on the Heterogeneous Generalized Gamma Model of Duration: With an Application to Kennan's Strike Data , 1991 .

[20]  J. Behrman,et al.  Black-white mortality inequalities☆ , 1991 .

[21]  Richard D. Gill,et al.  A counting process approach to maximum likelihood estimation in frailty models , 1992 .

[22]  Niels Keiding,et al.  Statistical Models Based on Counting Processes , 1993 .

[23]  Richard B. Davies,et al.  Nonparametric control for residual heterogeneity in modelling recurrent behavior , 1993 .

[24]  Kurt Brännäs,et al.  Semiparametric estimation of heterogeneous count data models , 1994 .

[25]  J J Heckman,et al.  Econometric mixture models and more general models for unobservables in duration analysis , 1994, Statistical methods in medical research.

[26]  C. Robert,et al.  Estimation of Finite Mixture Distributions Through Bayesian Sampling , 1994 .

[27]  P. Trivedi,et al.  Joint and separate score tests for state dependence and unobserved heterogeneity , 1994 .

[28]  Susan A. Murphy,et al.  Asymptotic Theory for the Frailty Model , 1995 .

[29]  A. Yashin,et al.  Genetic analysis of durations: Correlated frailty model applied to survival of Danish twins , 1995, Genetic epidemiology.

[30]  D. Commenges,et al.  Score test of homogeneity for survival data , 1995, Lifetime data analysis.

[31]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[32]  A two-sample distribution-free scale test of the smirnov type , 1996 .

[33]  Murray Aitkin,et al.  A hybrid EM/Gauss-Newton algorithm for maximum likelihood in mixture distributions , 1996, Stat. Comput..

[34]  Robert F. Engle,et al.  The Econometrics of Ultra-High Frequency Data , 1996 .

[35]  J. Horowitz,et al.  Semiparametric Estimation of a Censored Regression Model with an Unknown Transformation of the Dependent Variable , 1999 .

[36]  D. Dey,et al.  Semiparametric Bayesian analysis of survival data , 1997 .

[37]  O. Pons,et al.  Estimation and Tests in Finite Mixture Models for Censored Survival Data , 1997 .

[38]  S. Jaggia Alternative Forms of the Score Test for Heterogeneity in a Censored Exponential Model , 1997, Review of Economics and Statistics.

[39]  Susan A. Murphy,et al.  Maximum Likelihood Estimation in the Proportional Odds Model , 1997 .

[40]  Dominique Haughton,et al.  Packages for estimating finite mixtures : A review , 1997 .

[41]  J. Klein,et al.  Survival Analysis: Techniques for Censored and Truncated Data , 1997 .

[42]  R. Sickles,et al.  Maximum penalized likelihood estimation of mixed proportional hazard models , 1998 .

[43]  Jeffrey R. Russell,et al.  Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data , 1998 .

[44]  Specification analysis in mixed hazard models and a test of crossing survival functions , 1999 .

[45]  Joel L. Horowitz,et al.  Semiparametric Estimation of a Proportional Hazard Model with Unobserved Heterogeneity , 1999 .

[46]  Dankmar Böhning,et al.  Computer-Assisted Analysis of Mixtures and Applications , 2000, Technometrics.

[47]  An Algorithm for Robust Inference for the Cox Model with Frailties , 2000 .

[48]  N. Henze,et al.  Tests of fit for exponentiality based on a characterization via the mean residual life function , 2000 .

[49]  Maarten Lindeboom,et al.  Multistate Models for Clustered Duration Dataan Application to Workplace Effects on Individual Sickness Absenteeism , 2000, Review of Economics and Statistics.

[50]  Karl Mosler,et al.  A Cautionary Note on Likelihood Ratio Tests in Mixture Models , 2000 .

[51]  Yi Li,et al.  Covariate measurement errors in frailty models for clustered survival data , 2000 .

[52]  Karl Mosler,et al.  Likelihood ratio tests based on subglobal optimization: A power comparison in exponential mixture models , 2000 .

[53]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[54]  Karl Mosler,et al.  Theory & Methods: Testing for Homogeneity in an Exponential Mixture Model , 2001 .

[55]  Philip Hougaard,et al.  Analysis of Multivariate Survival Data , 2001 .

[56]  J. Kalbfleisch,et al.  A modified likelihood ratio test for homogeneity in finite mixture models , 2001 .

[57]  Bin Yu,et al.  Model Selection and the Principle of Minimum Description Length , 2001 .