BACH1 Stabilization by Antioxidants Stimulates Lung Cancer Metastasis

[1]  A. Jemal,et al.  Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries , 2018, CA: a cancer journal for clinicians.

[2]  S. Fendt,et al.  Metabolic Hallmarks of Metastasis Formation. , 2018, Trends in cell biology.

[3]  Donna D. Zhang,et al.  NRF2 and the Hallmarks of Cancer. , 2018, Cancer cell.

[4]  Matthew E. Ritchie,et al.  Synergy between the KEAP1/NRF2 and PI3K Pathways Drives Non-Small-Cell Lung Cancer with an Altered Immune Microenvironment. , 2018, Cell metabolism.

[5]  Hu Li,et al.  NRF2 facilitates breast cancer cell growth via HIF1ɑ-mediated metabolic reprogramming. , 2018, The international journal of biochemistry & cell biology.

[6]  Neel S Madhukar,et al.  A Predictive Model for Selective Targeting of the Warburg Effect through GAPDH Inhibition with a Natural Product. , 2017, Cell metabolism.

[7]  M. V. Vander Heiden,et al.  Activation of the NRF2 antioxidant program generates an imbalance in central carbon metabolism in cancer , 2017, eLife.

[8]  Francisco J. Sánchez-Rivera,et al.  Keap1 loss promotes Kras-driven lung cancer and results in a dependence on glutaminolysis , 2017, Nature Medicine.

[9]  Ash A. Alizadeh,et al.  Role of KEAP1/NRF2 and TP53 Mutations in Lung Squamous Cell Carcinoma Development and Radiation Resistance. , 2017, Cancer discovery.

[10]  D. Tuveson,et al.  ROS in Cancer: The Burning Question. , 2017, Trends in molecular medicine.

[11]  Angela N. Brooks,et al.  High-throughput Phenotyping of Lung Cancer Somatic Mutations. , 2016, Cancer cell.

[12]  Neville E Sanjana,et al.  Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening , 2016, Nature Protocols.

[13]  Osiris Martinez-Guzman,et al.  Heme dynamics and trafficking factors revealed by genetically encoded fluorescent heme sensors , 2016, Proceedings of the National Academy of Sciences.

[14]  Xiaocui Wang,et al.  NRF2 activation by antioxidant antidiabetic agents accelerates tumor metastasis , 2016, Science Translational Medicine.

[15]  Bjorn Baselet,et al.  Metabolic changes associated with tumor metastasis, part 1: tumor pH, glycolysis and the pentose phosphate pathway , 2016, Cellular and Molecular Life Sciences.

[16]  J. Locasale,et al.  The Warburg Effect: How Does it Benefit Cancer Cells? , 2016, Trends in biochemical sciences.

[17]  M. Bergo,et al.  Antioxidants can increase melanoma metastasis in mice , 2015, Science Translational Medicine.

[18]  R. Deberardinis,et al.  Oxidative stress inhibits distant metastasis by human melanoma cells , 2015, Nature.

[19]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[20]  K. Pienta,et al.  Glycolysis is the primary bioenergetic pathway for cell motility and cytoskeletal remodeling in human prostate and breast cancer cells , 2014, Oncotarget.

[21]  P. Schumacker,et al.  Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles' heel? , 2014, Nature Reviews Cancer.

[22]  Francisco J. Sánchez-Rivera,et al.  Rapid modeling of cooperating genetic events in cancer through somatic genome editing , 2014, Nature.

[23]  Paul Theodor Pyl,et al.  HTSeq – A Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[24]  A. Berns,et al.  Multiple cells-of-origin of mutant K-Ras–induced mouse lung adenocarcinoma , 2014, Proceedings of the National Academy of Sciences.

[25]  D. Bernard,et al.  Glucose metabolism and hexosamine pathway regulate oncogene-induced senescence , 2014, Cell Death and Disease.

[26]  E. Larsson,et al.  Antioxidants Accelerate Lung Cancer Progression in Mice , 2014, Science Translational Medicine.

[27]  T. Mak,et al.  Modulation of oxidative stress as an anticancer strategy , 2013, Nature Reviews Drug Discovery.

[28]  Paul D. Smith,et al.  Activity of the Monocarboxylate Transporter 1 Inhibitor AZD3965 in Small Cell Lung Cancer , 2013, Clinical Cancer Research.

[29]  P. Carmeliet,et al.  Role of PFKFB3-Driven Glycolysis in Vessel Sprouting , 2013, Cell.

[30]  Y. Okada,et al.  HMGA2 is a driver of tumor metastasis. , 2013, Cancer research.

[31]  A. Berns,et al.  Mouse models for lung cancer , 2013, Molecular oncology.

[32]  S. Kung,et al.  Transcriptional Network Analysis Identifies BACH1 as a Master Regulator of Breast Cancer Bone Metastasis , 2012, The Journal of Biological Chemistry.

[33]  H. Aburatani,et al.  Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. , 2012, Cancer cell.

[34]  Koichi Kobayashi,et al.  Evaluation of unbound free heme in plant cells by differential acetone extraction. , 2012, Plant & cell physiology.

[35]  Guangchuang Yu,et al.  clusterProfiler: an R package for comparing biological themes among gene clusters. , 2012, Omics : a journal of integrative biology.

[36]  T. Dick,et al.  Measuring E(GSH) and H2O2 with roGFP2-based redox probes. , 2011, Free radical biology & medicine.

[37]  Hemant Ishwaran,et al.  Signalling pathway for RKIP and Let‐7 regulates and predicts metastatic breast cancer , 2011, The EMBO journal.

[38]  T. Copetti,et al.  Anticancer Targets in the Glycolytic Metabolism of Tumors: A Comprehensive Review , 2011, Front. Pharmacol..

[39]  T. Finkel,et al.  Signal transduction by reactive oxygen species , 2011, The Journal of cell biology.

[40]  Scott E. Kern,et al.  Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis , 2011, Nature.

[41]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[42]  Derek Y. Chiang,et al.  Suppression of Lung Adenocarcinoma Progression by Nkx2-1 , 2011, Nature.

[43]  Masayuki Yamamoto,et al.  Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution , 2011, Genes to cells : devoted to molecular & cellular mechanisms.

[44]  T. Mak,et al.  Regulation of cancer cell metabolism , 2011, Nature Reviews Cancer.

[45]  M. McMahon,et al.  Cancer chemoprevention mechanisms mediated through the Keap1-Nrf2 pathway. , 2010, Antioxidants & redox signaling.

[46]  W. Wheaton,et al.  Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity , 2010, Proceedings of the National Academy of Sciences.

[47]  M. Soares,et al.  Mechanisms of cell protection by heme oxygenase-1. , 2010, Annual review of pharmacology and toxicology.

[48]  M. Gutscher,et al.  Proximity-based Protein Thiol Oxidation by H2O2-scavenging Peroxidases*♦ , 2009, The Journal of Biological Chemistry.

[49]  T. Jacks,et al.  Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase , 2009, Nature Protocols.

[50]  L. Cantley,et al.  Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation , 2009, Science.

[51]  J. Mackey,et al.  Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer , 2008, British Journal of Cancer.

[52]  Kazuhiro Iwai,et al.  Heme Induces Ubiquitination and Degradation of the Transcription Factor Bach1 , 2007, Molecular and Cellular Biology.

[53]  Eric S. Lander,et al.  Integrative Genomic Approaches Identify IKBKE as a Breast Cancer Oncogene , 2007, Cell.

[54]  M. Mota,et al.  Heme oxygenase-1 and carbon monoxide suppress the pathogenesis of experimental cerebral malaria , 2007, Nature Medicine.

[55]  J. Herman,et al.  Dysfunctional KEAP1–NRF2 Interaction in Non-Small-Cell Lung Cancer , 2006, PLoS medicine.

[56]  T. Jacks,et al.  The differential effects of mutant p53 alleles on advanced murine lung cancer. , 2005, Cancer research.

[57]  Yusuke Nakamura,et al.  Plakophilin 3 oncogene as prognostic marker and therapeutic target for lung cancer. , 2005, Cancer research.

[58]  Patricia Soteropoulos,et al.  Association between gene expression profile and tumor invasion in oral squamous cell carcinoma. , 2004, Cancer genetics and cytogenetics.

[59]  Hiroshi Suzuki,et al.  Heme regulates gene expression by triggering Crm1‐dependent nuclear export of Bach1 , 2004, The EMBO journal.

[60]  M. Brand,et al.  Heme regulates the dynamic exchange of Bach1 and NF-E2-related factors in the Maf transcription factor network. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[61]  A. Berns,et al.  Induction of small cell lung cancer by somatic inactivation of both Trp53 and Rb1 in a conditional mouse model. , 2003, Cancer cell.

[62]  Thomas D Pollard,et al.  Cellular Motility Driven by Assembly and Disassembly of Actin Filaments , 2003, Cell.

[63]  H. Varmus,et al.  Induction and apoptotic regression of lung adenocarcinomas by regulation of a K-Ras transgene in the presence and absence of tumor suppressor genes. , 2001, Genes & development.

[64]  T. Jacks,et al.  Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. , 2001, Genes & development.

[65]  S. Linn,et al.  Mouse model for lung tumorigenesis through Cre/lox controlled sporadic activation of the K-Ras oncogene , 2001, Oncogene.

[66]  O. Dalesio,et al.  EUROSCAN, a randomized trial of vitamin A and N-acetylcysteine in patients with head and neck cancer or lung cancer. For the EUropean Organization for Research and Treatment of Cancer Head and Neck and Lung Cancer Cooperative Groups. , 2000, Journal of the National Cancer Institute.

[67]  A. Berns,et al.  Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. , 2000, Genes & development.

[68]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[69]  J. Crowley,et al.  The Selenium and Vitamin E Cancer Prevention Trial (SELECT) , 2011 .

[70]  Keara M. Lane,et al.  Mouse models of human non-small-cell lung cancer: raising the bar. , 2005, Cold Spring Harbor symposia on quantitative biology.

[71]  D. Albanes,et al.  The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. , 1994, The New England journal of medicine.