Refined Vertex Codes and Vertex Partitioning Methodology for Graph Isomorphism Testing

In this paper we have pursued the initial vertex partioning methodology for a graph (digraph) isomorphism testing problem using lexicographic ordering of vertex codes. The newly introduced vertex codes (which may be of fixed length or of variable length) incorporate order independent parameters of a graph in relation to a vertex and can be computed efficiently. The vertex partitioning obtaned by the lexicographic ordering of vertex codes is shown to yield the most refined initial vertex partioning known. Examples are presented for the illustration of our method. Specifically, we demonstrate that our approach of using refined vertex oodes for vertex partitioning indeed distinguishes the nonisomorphic cases of strongly regular gaphs of 28 vertices. Our results suggest that the methodology Is powerful in the context of isomorphism testing for large classes of graphs. Further research needed in this area is indicated.

[1]  D. Corneil,et al.  An Efficient Algorithm for Graph Isomorphism , 1970, JACM.

[2]  Alfs T. Berztiss,et al.  A Backtrack Procedure for Isomorphism of Directed Graphs , 1973, JACM.

[3]  Kellogg S. Booth,et al.  A Linear Time Algorithm for Deciding Interval Graph Isomorphism , 1979, JACM.

[4]  Xavier L. Hubaut,et al.  Strongly regular graphs , 1975, Discret. Math..

[5]  Sandra Mitchell Hedetniemi,et al.  Linear Algorithms for Isomorphism of Maximal Outerplanar Graphs , 1979, JACM.

[6]  Douglas C. Schmidt,et al.  A Fast Backtracking Algorithm to Test Directed Graphs for Isomorphism Using Distance Matrices , 1976, J. ACM.

[7]  Narsingh Deo,et al.  A new algorithm for digraph isomorphism , 1977 .

[8]  Stephen H. Unger,et al.  GIT—a heuristic program for testing pairs of directed line graphs for isomorphism , 1964, CACM.

[9]  Edward H. Sussenguth A Graph-Theoretic Algorithm for Matching Chemical Structures. , 1965 .

[10]  Brendan D. McKay,et al.  Computing automorphisms and canonical labellings of graphs , 1978 .

[11]  Kellogg S. Booth,et al.  Isomorphism Testing for Graphs, Semigroups, and Finite Automata Are Polynomially Equivalent Problems , 1978, SIAM J. Comput..

[12]  Frank Thomson Leighton,et al.  An efficient linear algebraic algorithm for the determination of isomorphism in pairs of undirected graphs , 1976 .

[13]  James Turner,et al.  Generalized Matrix Functions and the Graph Isomorphism Problem , 1968 .

[14]  Georg Gati,et al.  Further annotated bibliography on the isomorphism disease , 1979, J. Graph Theory.

[15]  George I. Davida,et al.  Optimum Featurs and Graph Isomorphism , 1974, IEEE Trans. Syst. Man Cybern..

[16]  Derek G. Corneil,et al.  The graph isomorphism disease , 1977, J. Graph Theory.

[17]  M. H. Rahnavard,et al.  Initial vertex partitioning and testing isomorphism of graphs and digraphs , 1981 .

[18]  L. Weinberg,et al.  A Simple and Efficient Algorithm for Determining Isomorphism of Planar Triply Connected Graphs , 1966 .

[19]  Rudolf Mathon,et al.  A Note on the Graph Isomorphism counting Problem , 1979, Inf. Process. Lett..

[20]  D. Ź. Djoković Isomorphism problem for a special class of graphs , 1970 .

[21]  R. C. Bose Strongly regular graphs, partial geometries and partially balanced designs. , 1963 .

[22]  J. P. Steen Principe d'un algorithme de recherche d'un isomorphisme entre deux graphes , 1969 .

[23]  Larry E. Druffel,et al.  A Generator Set for Representing All Automorphisms of a Graph , 1978 .

[24]  Robert E. Tarjan,et al.  Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..

[25]  Robert E. Tarjan,et al.  Isomorphism of Planar Graphs , 1972, Complexity of Computer Computations.

[26]  Gary L. Miller,et al.  Graph isomorphism, general remarks , 1977, STOC '77.