A responsive hidden toehold to enable controllable DNA strand displacement reactions.

[1]  L. Gold,et al.  Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. , 1990, Science.

[2]  Jonathan Bath,et al.  Remote toehold: a mechanism for flexible control of DNA hybridization kinetics. , 2011, Journal of the American Chemical Society.

[3]  Robert M. Dirks,et al.  Triggered amplification by hybridization chain reaction. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Erik Winfree,et al.  Catalyzed relaxation of a metastable DNA fuel. , 2006, Journal of the American Chemical Society.

[5]  Andrew J. Turberfield,et al.  Kinetically controlled self-assembly of DNA oligomers. , 2009, Journal of the American Chemical Society.

[6]  Juewen Liu,et al.  Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. , 2005, Angewandte Chemie.

[7]  A. Turberfield,et al.  DNA fuel for free-running nanomachines. , 2003, Physical review letters.

[8]  G. Seelig,et al.  Enzyme-Free Nucleic Acid Logic Circuits , 2022 .

[9]  Eun Jeong Cho,et al.  Applications of aptamers as sensors. , 2009, Annual review of analytical chemistry.

[10]  N. Seeman Nucleic Acid Nanostructures and Topology. , 1998, Angewandte Chemie.

[11]  Dongsheng Liu,et al.  DNA nanomachines and their functional evolution. , 2009, Chemical communications.

[12]  Friedrich C Simmel,et al.  Nucleic acid based molecular devices. , 2011, Angewandte Chemie.

[13]  Friedrich C. Simmel,et al.  Nukleinsäure‐basierte molekulare Werkzeuge , 2011 .

[14]  D. Y. Zhang,et al.  Control of DNA strand displacement kinetics using toehold exchange. , 2009, Journal of the American Chemical Society.

[15]  Juewen Liu,et al.  Functional nucleic acid sensors. , 2009, Chemical reviews.

[16]  Nadrian C Seeman,et al.  Structural DNA nanotechnology: growing along with Nano Letters. , 2010, Nano letters.

[17]  D. Y. Zhang,et al.  Engineering Entropy-Driven Reactions and Networks Catalyzed by DNA , 2007, Science.

[18]  Robert M. Dirks,et al.  An autonomous polymerization motor powered by DNA hybridization , 2007, Nature Nanotechnology.

[19]  Nadrian C. Seeman Nanostrukturen und Topologien von Nucleinsäuren , 1998 .

[20]  A. Turberfield,et al.  A free-running DNA motor powered by a nicking enzyme. , 2005, Angewandte Chemie.

[21]  J. Szostak,et al.  A DNA aptamer that binds adenosine and ATP. , 1995, Biochemistry.

[22]  Yingfu Li,et al.  Structure-switching signaling aptamers. , 2003, Journal of the American Chemical Society.

[23]  A. Turberfield,et al.  A DNA-fuelled molecular machine made of DNA , 2022 .

[24]  Harry M. T. Choi,et al.  Programming biomolecular self-assembly pathways , 2008, Nature.

[25]  J. Reif,et al.  A unidirectional DNA walker that moves autonomously along a track. , 2004, Angewandte Chemie.

[26]  Erik Winfree,et al.  Dynamic allosteric control of noncovalent DNA catalysis reactions. , 2008, Journal of the American Chemical Society.

[27]  N. Seeman DNA in a material world , 2003, Nature.

[28]  J. Szostak,et al.  In vitro selection of RNA molecules that bind specific ligands , 1990, Nature.