Generalized Bouncy Particle Sampler

As a special example of piecewise deterministic Markov process, bouncy particle sampler is a rejection-free, irreversible Markov chain Monte Carlo algorithm and can draw samples from target distribution efficiently. We generalize bouncy particle sampler in terms of its transition dynamics. In BPS, the transition dynamic at event time is deterministic, but in GBPS, it is random. With the help of this randomness, GBPS can overcome the reducibility problem in BPS without refreshement.

[1]  G. Roberts,et al.  A piecewise deterministic scaling limit of Lifted Metropolis-Hastings in the Curie-Weiss model , 2015, 1509.00302.

[2]  Martin Hairer,et al.  Convergence of Markov Processes August , 2010 .

[3]  A. Doucet,et al.  The Bouncy Particle Sampler: A Nonreversible Rejection-Free Markov Chain Monte Carlo Method , 2015, 1510.02451.

[4]  Xiangyu Wang,et al.  Parallelizing MCMC via Weierstrass Sampler , 2013, 1312.4605.

[5]  M.H.A. Davis,et al.  Markov Models & Optimization , 1993 .

[6]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[7]  C. Hwang,et al.  Accelerating Gaussian Diffusions , 1993 .

[8]  Edward I. George,et al.  Bayes and big data: the consensus Monte Carlo algorithm , 2016, Big Data and Information Theory.

[9]  Arnaud Doucet,et al.  On Markov chain Monte Carlo methods for tall data , 2015, J. Mach. Learn. Res..

[10]  G. Shedler,et al.  Simulation of Nonhomogeneous Poisson Processes by Thinning , 1979 .

[11]  Paul Fearnhead,et al.  Piecewise Deterministic Markov Processes for Continuous-Time Monte Carlo , 2016, Statistical Science.

[12]  Chong Wang,et al.  Asymptotically Exact, Embarrassingly Parallel MCMC , 2013, UAI.

[13]  Joris Bierkens,et al.  Non-reversible Metropolis-Hastings , 2014, Stat. Comput..

[14]  C. Hwang,et al.  Accelerating reversible Markov chains , 2013 .

[15]  P. Fearnhead,et al.  Piecewise deterministic Markov processes for scalable Monte Carlo on restricted domains , 2017, 1701.04244.

[16]  P. Fearnhead,et al.  The Zig-Zag process and super-efficient sampling for Bayesian analysis of big data , 2016, The Annals of Statistics.

[17]  Yi Sun,et al.  Improving the Asymptotic Performance of Markov Chain Monte-Carlo by Inserting Vortices , 2010, NIPS.

[18]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[19]  E A J F Peters,et al.  Rejection-free Monte Carlo sampling for general potentials. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Mark H. A. Davis Piecewise‐Deterministic Markov Processes: A General Class of Non‐Diffusion Stochastic Models , 1984 .

[21]  David B. Dunson,et al.  Robust and Scalable Bayes via a Median of Subset Posterior Measures , 2014, J. Mach. Learn. Res..

[22]  R. Kohn,et al.  Speeding Up MCMC by Efficient Data Subsampling , 2014, Journal of the American Statistical Association.