An optimal convex hull algorithm in any fixed dimension

We present a deterministic algorithm for computing the convex hull ofn points inEd in optimalO(n logn+n⌞d/2⌟) time. Optimal solutions were previously known only in even dimension and in dimension 3. A by-product of our result is an algorithm for computing the Voronoi diagram ofn points ind-space in optimalO(n logn+n⌜d/2⌝) time.

[1]  Kenneth L. Clarkson,et al.  RANDOMIZED GEOMETRIC ALGORITHMS , 1992 .

[2]  Ronald L. Graham,et al.  An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set , 1972, Inf. Process. Lett..

[3]  Raimund Seidel,et al.  Constructing higher-dimensional convex hulls at logarithmic cost per face , 1986, STOC '86.

[4]  David G. Kirkpatrick,et al.  The Ultimate Planar Convex Hull Algorithm? , 1986, SIAM J. Comput..

[5]  Kevin Q. Brown,et al.  Voronoi Diagrams from Convex Hulls , 1979, Inf. Process. Lett..

[6]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1988, SCG '88.

[7]  Bernard Chazelle,et al.  Cutting hyperplanes for divide-and-conquer , 1993, Discret. Comput. Geom..

[8]  F. P. Preparata,et al.  Convex hulls of finite sets of points in two and three dimensions , 1977, CACM.

[9]  Jirí Matousek,et al.  Linear optimization queries , 1992, SCG '92.

[10]  Pankaj K. Agarwal Partitioning arrangements of lines I: An efficient deterministic algorithm , 1990, Discret. Comput. Geom..

[11]  Bernard Chazelle,et al.  A deterministic view of random sampling and its use in geometry , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[12]  J. Spencer Ten lectures on the probabilistic method , 1987 .

[13]  Jirí Matousek,et al.  Cutting hyperplane arrangements , 1990, SCG '90.

[14]  R. Seidel A Convex Hull Algorithm Optimal for Point Sets in Even Dimensions , 1981 .

[15]  Kenneth L. Clarkson,et al.  A Randomized Algorithm for Closest-Point Queries , 1988, SIAM J. Comput..

[16]  Jirí Matousek,et al.  Approximations and optimal geometric divide-and-conquer , 1991, STOC '91.

[17]  Raimund Seidel,et al.  Voronoi diagrams and arrangements , 1986, Discret. Comput. Geom..

[18]  Raimund Seidel,et al.  Small-dimensional linear programming and convex hulls made easy , 1991, Discret. Comput. Geom..

[19]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[20]  Vladimir Vapnik,et al.  Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .

[21]  Jirí Matousek Cutting hyperplane arrangements , 1991, Discret. Comput. Geom..

[22]  Jirí Matousek,et al.  Efficient partition trees , 1991, SCG '91.