Detection of transmitter release with carbon fiber electrodes.

[1]  F. Gonon,et al.  [In vivo continuous electrochemical determination of dopamine release in rat neostriatum]. , 1978, Comptes rendus hebdomadaires des seances de l'Academie des sciences. Serie D: Sciences naturelles.

[2]  J F Pujol,et al.  Normal pulse polarography with carbon fiber electrodes for in vitro and in vivo determination of catecholamines. , 1979, Analytical chemistry.

[3]  R. Wightman,et al.  Faradaic electrochemistry at microvoltammetric electrodes , 1980 .

[4]  M. Armstrong‐James,et al.  The electrical characteristics of carbon fibre microelectrodes , 1980, Journal of Neuroscience Methods.

[5]  G. Gerhardt,et al.  Determination of diffusion coefficients by flow injection analysis , 1982 .

[6]  J. Nicholls,et al.  Chemical transmission between individual Retzius and sensory neurones of the leech in culture. , 1982, The Journal of physiology.

[7]  L. Henderson The role of 5‐hydroxytryptamine as a transmitter between identified leech neurones in culture. , 1983, The Journal of physiology.

[8]  J. Polak,et al.  Neuropeptide tyrosine (NPY) immunoreactivity in norepinephrine-containing cells and nerves of the mammalian adrenal gland. , 1984, Endocrinology.

[9]  Jonathan A. Stamford,et al.  In vivo voltammetry: Some methodological considerations , 1986, Journal of Neuroscience Methods.

[10]  R. S. Kelly,et al.  Bevelled carbon-fiber ultramicroelectrodes , 1986 .

[11]  J. Nicholls,et al.  Voltage dependence of 5‐hydroxytryptamine release at a synapse between identified leech neurones in culture. , 1986, The Journal of physiology.

[12]  P. Drapeau,et al.  Selection of postsynaptic serotonin receptors during reinnervation of an identified leech neuron in culture , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  S. Weber,et al.  Electrochemical detection of peptides. , 1989, Analytical chemistry.

[14]  J. Nicholls,et al.  Steps in the development of chemical and electrical synapses by pairs of identified leech neurons in culture , 1989, Proceedings of the Royal Society of London. B. Biological Sciences.

[15]  J. A. Jankowski,et al.  Nicotinic receptor-mediated catecholamine secretion from individual chromaffin cells. Chemical evidence for exocytosis. , 1990, The Journal of biological chemistry.

[16]  M. Duchen Effects of metabolic inhibition on the membrane properties of isolated mouse primary sensory neurones. , 1990, The Journal of physiology.

[17]  J. A. Jankowski,et al.  Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[18]  J. A. Jankowski,et al.  Etched carbon-fiber electrodes as amperometric detectors of catecholamine secretion from isolated biological cells. , 1991, Analytical chemistry.

[19]  J. A. Jankowski,et al.  Analysis of diffusional broadening of vesicular packets of catecholamines released from biological cells during exocytosis. , 1992, Analytical chemistry.

[20]  Robert H. Chow,et al.  Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells , 1992, Nature.

[21]  J. M. Fernández,et al.  Release of secretory products during transient vesicle fusion , 1993, Nature.

[22]  R. Wightman,et al.  Principles of voltammetry and microelectrode surface states , 1993, Journal of Neuroscience Methods.

[23]  R. Kennedy,et al.  Amperometric monitoring of chemical secretions from individual pancreatic beta-cells. , 1993, Analytical chemistry.

[24]  E. Neher Secretion without full fusion , 1993, Nature.

[25]  J. A. Jankowski,et al.  Temporal characteristics of quantal secretion of catecholamines from adrenal medullary cells. , 1993, The Journal of biological chemistry.

[26]  F. Engert,et al.  A fast activating presynaptic reuptake current during serotonergic transmission in identified neurons of Hirudo , 1993, Neuron.

[27]  A. Ewing,et al.  Amperometric monitoring of stimulated catecholamine release from rat pheochromocytoma (PC12) cells at the zeptomole level. , 1994, Analytical chemistry.

[28]  J. López-Barneo,et al.  Hypoxia induces voltage-dependent Ca2+ entry and quantal dopamine secretion in carotid body glomus cells. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[29]  T. Südhof,et al.  Synaptic vesicles and exocytosis. , 1994, Annual review of neuroscience.

[30]  Z. Zhou,et al.  Amperometric detection of stimulus-induced quantal release of catecholamines from cultured superior cervical ganglion neurons. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[31]  J. R. Kirchhoff,et al.  Chemical vapor deposition fabrication and characterization of silica-coated carbon fiber ultramicroelectrodes. , 1995, Analytical chemistry.

[32]  Robert H. Chow,et al.  Electrochemical Detection of Secretion from Single Cells , 1995 .

[33]  Zhuan Zhou,et al.  Action Potential-induced Quantal Secretion of Catecholamines from Rat Adrenal Chromaffin Cells (*) , 1995, The Journal of Biological Chemistry.

[34]  R. Penner A Practical Guide to Patch Clamping , 1995 .

[35]  D. Bruns,et al.  Real-time measurement of transmitter release from single synaptic vesicles , 1995, Nature.

[36]  R. Kennedy,et al.  Electrochemical detection of exocytosis at single rat melanotrophs. , 1995, Analytical chemistry.

[37]  R. Wightman,et al.  Temporally resolved, independent stages of individual exocytotic secretion events. , 1996, Biophysical journal.

[38]  R. Chow,et al.  A simple method for insulating carbon-fiber microelectrodes using anodic electrophoretic deposition of paint. , 1996, Analytical chemistry.

[39]  R. Wightman,et al.  Exocytotic release from individual granules exhibits similar properties at mast and chromaffin cells. , 1996, Biophysical journal.

[40]  A. Jeromin,et al.  Inhibition of Transmitter Release Correlates with the Proteolytic Activity of Tetanus Toxin and Botulinus Toxin A in Individual Cultured Synapses of Hirudo medicinalis , 1997, The Journal of Neuroscience.

[41]  R. Kennedy,et al.  Effects of Intravesicular H+ and Extracellular H+ and Zn2+ on Insulin Secretion in Pancreatic Beta Cells* , 1997, The Journal of Biological Chemistry.

[42]  G. Alvarez de Toledo,et al.  The exocytotic event in chromaffin cells revealed by patch amperometry , 1997, Nature.

[43]  E. Pothos,et al.  Presynaptic Recording of Quanta from Midbrain Dopamine Neurons and Modulation of the Quantal Size , 1998, The Journal of Neuroscience.

[44]  V. Valero,et al.  High calcium concentrations shift the mode of exocytosis to the kiss-and-run mechanism , 1999, Nature Cell Biology.

[45]  B. Hille,et al.  Rapid fabrication of plastic-insulated carbon-fiber electrodes for micro-amperometry , 1999, Journal of Neuroscience Methods.

[46]  E. Pothos,et al.  Regulation of Quantal Size by Presynaptic Mechanisms , 2000, Reviews in the neurosciences.

[47]  D. Bruns,et al.  Quantal Release of Serotonin , 2000, Neuron.

[48]  Y. Oka,et al.  Amperometric recording of gonadotropin-releasing hormone release activity in the pituitary of the dwarf gourami (teleosat) brain-pituitary slices , 2001, Neuroscience Letters.

[49]  Manfred Lindau,et al.  Exocytosis of single chromaffin granules in cell-free inside-out membrane patches , 2003, Nature Cell Biology.