The GALAH survey: tracing the Galactic disc with open clusters

Open clusters are unique tracers of the history of our own Galaxy’s disc. According to our membership analysis based on Gaia astrometry, out of the 226 potential clusters falling in the footprint of the GALactic Archaeology with HERMES (GALAH) survey or the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey, we find that 205 have secure members that were observed by at least one of the surveys. Furthermore, members of 134 clusters have high-quality spectroscopic data that we use to determine their chemical composition. We leverage this information to study the chemical distribution throughout the Galactic disc of 21 elements, from C to Eu. The radial metallicity gradient obtained from our analysis is −0.076 ± 0.009 dex kpc−1, which is in agreement with previous works based on smaller samples. Furthermore, the gradient in the [Fe/H]–guiding radius (rguid) plane is −0.073 ± 0.008 dex kpc−1. We show consistently that open clusters trace the distribution of chemical elements throughout the Galactic disc differently than field stars. In particular, at the given radius, open clusters show an age–metallicity relation that has less scatter than field stars. As such scatter is often interpreted as an effect of radial migration, we suggest that these differences are due to the physical selection effect imposed by our Galaxy: clusters that would have migrated significantly also had higher chances to get destroyed. Finally, our results reveal trends in the [X/Fe]–rguid–age space, which are important to understand production rates of different elements as a function of space and time.

[1]  C. Kobayashi,et al.  The Origin of Elements from Carbon to Uranium , 2020, The Astrophysical Journal.

[2]  J. Christensen-Dalsgaard,et al.  High-precision abundances of elements in solar-type stars , 2020, Astronomy & Astrophysics.

[3]  Sergey E. Koposov,et al.  The Gaia-ESO survey: the non-universality of the age–chemical-clocks–metallicity relations in the Galactic disc , 2020, Astronomy & Astrophysics.

[4]  D. Hobbs,et al.  Radial migration and vertical action in N-body simulations , 2020, 2004.13646.

[5]  S. Desidera,et al.  How Magnetic Activity Alters What We Learn from Stellar Spectra , 2020, The Astrophysical Journal.

[6]  G. Zhao,et al.  Open clusters as tracers on radial migration of the galactic disc , 2020, 2004.09382.

[7]  F. Anders,et al.  Painting a portrait of the Galactic disc with its stellar clusters , 2020, Astronomy & Astrophysics.

[8]  D. A. García-Hernández,et al.  The Open Cluster Chemical Abundances and Mapping Survey. IV. Abundances for 128 Open Clusters Using SDSS/APOGEE DR16 , 2020, The Astronomical Journal.

[9]  J. Sanders,et al.  Keeping It Cool: Much Orbit Migration, yet Little Heating, in the Galactic Disk , 2020, The Astrophysical Journal.

[10]  Rosa M. Badia,et al.  Hunting for open clusters in Gaia DR2: 582 new open clusters in the Galactic disc , 2020, Astronomy & Astrophysics.

[11]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: a new approach to chemically characterising young open clusters , 2020, Astronomy & Astrophysics.

[12]  U. Heiter,et al.  Differential abundances of open clusters and their tidal tails: Chemical tagging and chemical homogeneity , 2019, Astronomy & Astrophysics.

[13]  L. Spina,et al.  The Chemical Signatures of Planetary Engulfment Events in Binary Systems , 2019, The Astrophysical Journal.

[14]  M. Hayden,et al.  The GALAH survey: temporal chemical enrichment of the galactic disc , 2019, Monthly Notices of the Royal Astronomical Society.

[15]  D. Balser,et al.  Metallicity Structure in the Milky Way Disk Revealed by Galactic H ii Regions , 2019, The Astrophysical Journal.

[16]  D. Lorenzo-Oliveira,et al.  The effect of stellar activity on the spectroscopic stellar parameters of the young solar twin HIP 36515 , 2019, Monthly Notices of the Royal Astronomical Society: Letters.

[17]  T. Buck On the origin of the chemical bimodality of disc stars: a tale of merger and migration , 2019, Monthly Notices of the Royal Astronomical Society.

[18]  H. Rix,et al.  The Inside-out Growth of the Galactic Disk , 2019, The Astrophysical Journal.

[19]  F. Anders,et al.  OCCASO – III. Iron peak and α elements of 18 open clusters. Comparison with chemical evolution models and field stars , 2019, Monthly Notices of the Royal Astronomical Society.

[20]  A. Mustill,et al.  Super-Earth ingestion can explain the anomalously high metal abundances of M67 Y2235 , 2019, Monthly Notices of the Royal Astronomical Society.

[21]  H. Monteiro,et al.  Distances and ages from isochrone fits of 150 open clusters using Gaia DR2 data , 2019, Monthly Notices of the Royal Astronomical Society.

[22]  H. Rix,et al.  In the Galactic Disk, Stellar [Fe/H] and Age Predict Orbits and Precise [X/Fe] , 2019, The Astrophysical Journal.

[23]  S. Feltzing,et al.  Constraining churning and blurring in the Milky Way using large spectroscopic surveys – an exploratory study , 2019, Monthly Notices of the Royal Astronomical Society.

[24]  F. Bresolin Metallicity gradients in small and nearby spiral galaxies , 2019, Monthly Notices of the Royal Astronomical Society.

[25]  R. Church,et al.  Stellar escapers from M67 can reach solar-like Galactic orbits , 2019, Monthly Notices of the Royal Astronomical Society.

[26]  T. Cantat-Gaudin,et al.  Hunting for open clusters in Gaia DR2: the Galactic anticentre , 2019, Astronomy & Astrophysics.

[27]  J. Zinn,et al.  The K2-HERMES Survey: age and metallicity of the thick disc , 2019, Monthly Notices of the Royal Astronomical Society.

[28]  A. Dotter,et al.  Chemical (in)homogeneity and atomic diffusion in the open cluster M 67 , 2019, Astronomy & Astrophysics.

[29]  Chao Liu,et al.  An intuitive 3D map of the Galactic warp’s precession traced by classical Cepheids , 2019, Nature Astronomy.

[30]  D. Bossini,et al.  Open clusters in APOGEE and GALAH , 2019, Astronomy & Astrophysics.

[31]  M. Hayden,et al.  The GALAH survey: chemodynamics of the solar neighbourhood , 2019, Monthly Notices of the Royal Astronomical Society.

[32]  D. Bossini,et al.  Age determination for 269 Gaia DR2 open clusters , 2019, Astronomy & Astrophysics.

[33]  J. Bland-Hawthorn,et al.  Star Clusters Across Cosmic Time , 2018, Annual Review of Astronomy and Astrophysics.

[34]  J. Kruijssen,et al.  A systematic analysis of star cluster disruption by tidal shocks – I. Controlled N-body simulations and a new theoretical model , 2018, Monthly Notices of the Royal Astronomical Society.

[35]  C. Chiappini,et al.  2D chemical evolution model: The impact of Galactic disc asymmetries on azimuthal chemical abundance variations , 2018, Astronomy & Astrophysics.

[36]  A. Krone-Martins,et al.  Open cluster kinematics with Gaia DR2 , 2018, Astronomy & Astrophysics.

[37]  H. Rix,et al.  The Circular Velocity Curve of the Milky Way from 5 to 25 kpc , 2018, The Astrophysical Journal.

[38]  J. Bovy,et al.  Vertical waves in the solar neighbourhood inGaiaDR2 , 2018, Monthly Notices of the Royal Astronomical Society.

[39]  V. S. Aguirre,et al.  Galactic Archaeology with asteroseismic ages: Evidence for delayed gas infall in the formation of the Milky Way disc , 2018, Astronomy & Astrophysics.

[40]  H. Rix,et al.  The Vertical Motion History of Disk Stars throughout the Galaxy , 2018, The Astrophysical Journal.

[41]  S. Blanco-Cuaresma,et al.  A phylogenetic approach to chemical tagging , 2018, Astronomy & Astrophysics.

[42]  M. Krumholz,et al.  Mixing of metals during star cluster formation: statistics and implications for chemical tagging , 2018, Monthly Notices of the Royal Astronomical Society.

[43]  S. Rabien,et al.  Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole , 2018, Astronomy & Astrophysics.

[44]  D. Lorenzo-Oliveira,et al.  The Solar Twin Planet Search , 2018, Astronomy & Astrophysics.

[45]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: the origin and evolution of s-process elements , 2018, Astronomy & Astrophysics.

[46]  H. Rix,et al.  Measuring Radial Orbit Migration in the Galactic Disk , 2018, The Astrophysical Journal.

[47]  R. Carrera,et al.  A Gaia DR2 view of the open cluster population in the Milky Way , 2018, Astronomy & Astrophysics.

[48]  P. J. Richards,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[49]  F. Anders,et al.  Estimating stellar birth radii and the time evolution of Milky Way’s ISM metallicity gradient , 2018, Monthly Notices of the Royal Astronomical Society.

[50]  U. Munari,et al.  The GALAH Survey: Second Data Release , 2018, 1804.06041.

[51]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: evidence of atomic diffusion in M67? , 2018, Monthly Notices of the Royal Astronomical Society.

[52]  D. A. García-Hernández,et al.  Chemical Abundances of Main-sequence, Turnoff, Subgiant, and Red Giant Stars from APOGEE Spectra. I. Signatures of Diffusion in the Open Cluster M67 , 2018, 1803.04461.

[53]  J. Bean,et al.  The Chemical Homogeneity of Sun-like Stars in the Solar Neighborhood , 2018, The Astrophysical Journal.

[54]  A. Krone-Martins,et al.  Characterising open clusters in the solar neighbourhood with the Tycho-Gaia Astrometric Solution , 2018, Astronomy & Astrophysics.

[55]  Jake T. Clark,et al.  The K2-HERMES Survey. I. Planet-candidate Properties from K2 Campaigns 1–3 , 2017, 1712.06774.

[56]  M. Hayden,et al.  The AMBRE project: The thick thin disk and thin thick disk of the Milky Way , 2017, 1712.02358.

[57]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: Churning through the Milky Way , 2017, 1711.05751.

[58]  J. Bean,et al.  The temporal evolution of neutron-capture elements in the Galactic discs , 2017, 1711.03643.

[59]  Alice C. Quillen,et al.  Migration in the shearing sheet and estimates for young open cluster migration , 2017, 1709.04801.

[60]  H. Rix,et al.  Origin of chemically distinct discs in the Auriga cosmological simulations , 2017, 1708.07834.

[61]  M. Krumholz,et al.  Metallicity Fluctuation Statistics in the Interstellar Medium and Young Stars. I. Variance and Correlation , 2017, 1708.06853.

[62]  D. Lambert,et al.  Solar Twins and the Barium Puzzle , 2017, 1707.07051.

[63]  S. Martell,et al.  The TESS-HERMES survey data release 1 : high-resolution spectroscopy of the TESS southern continuous viewing zone , 2017, 1707.05753.

[64]  G. Carraro,et al.  The Gaia-ESO Survey: Galactic evolution of sulphur and zinc , 2017, 1704.02981.

[65]  A. Bragaglia,et al.  The Gaia-ESO Survey: radial distribution of abundances in the Galactic disc from open clusters and young-field stars , 2017, 1703.00762.

[66]  A. Klutsch,et al.  The Gaia-ESO Survey: The present-day radial metallicity distribution of the Galactic disc probed by pre-main-sequence clusters , 2017, 1702.03461.

[67]  A. Robin,et al.  Evolution over time of the Milky Way's disc shape , 2017, 1701.00475.

[68]  V. D’Orazi,et al.  First determination of s -process element abundances in pre-main sequence clusters: Y, Zr, La, and Ce in IC 2391, the Argus association, and IC 2602 , 2016, 1612.06406.

[69]  B. Pichardo,et al.  ON THE SURVIVAL OF HIGH-ALTITUDE OPEN CLUSTERS WITHIN THE MILKY WAY GALAXY TIDES , 2016, 1611.04595.

[70]  Astronomy,et al.  On the metallicity dependence of the [Y/Mg]–age relation for solar-type stars , 2016, 1610.03852.

[71]  Coryn A. L. Bailer-Jones,et al.  ESTIMATING DISTANCES FROM PARALLAXES. II. PERFORMANCE OF BAYESIAN DISTANCE ESTIMATORS ON A GAIA-LIKE CATALOGUE , 2016, 1609.03424.

[72]  D. O. Astronomy,et al.  The evolution of the Milky Way: New insights from open clusters , 2016, 1609.02619.

[73]  F. Baudin,et al.  Red giants observed by CoRoT and APOGEE: The evolution of the Milky Way's radial metallicity gradient , 2016, 1608.04951.

[74]  M. Asplund,et al.  Nucleosynthetic history of elements in the Galactic disk - [X/Fe]–age relations from high-precision spectroscopy , 2016, 1606.04842.

[75]  A. Bragaglia,et al.  TheGaia-ESO Survey: Probes of the inner disk abundance gradient , 2016, Astronomy & Astrophysics.

[76]  M. Davies,et al.  Gravitational scattering of stars and clusters and the heating of the Galactic disk , 2016, 1605.02965.

[77]  A. Karakas,et al.  STELLAR YIELDS FROM METAL-RICH ASYMPTOTIC GIANT BRANCH MODELS , 2016, 1604.02178.

[78]  B. Pichardo,et al.  Revealing the spiral arms through radial migration and the shape of the metallicity distribution function , 2016, 1604.01765.

[79]  C. Prieto,et al.  Chemical abundance gradients from open clusters in the Milky Way disk: Results from the APOGEE survey , 2016, 1601.03099.

[80]  E. Antiche,et al.  The evolution of the Sun's birth cluster and the search for the solar siblings with Gaia , 2016, 1601.00447.

[81]  J. Bird,et al.  APOGEE KINEMATICS. I. OVERVIEW OF THE KINEMATICS OF THE GALACTIC BULGE AS MAPPED BY APOGEE , 2015, 1512.04948.

[82]  C. Soubiran,et al.  On the metallicity of open clusters. III. Homogenised sample , 2015, 1511.08884.

[83]  C. Battistini,et al.  The origin and evolution of r- and s-process elements in the Milky Way stellar disk , 2015, 1511.00966.

[84]  J. Mel'endez,et al.  Planet signatures and effect of the chemical evolution of the Galactic thin-disk stars , 2015, 1511.01012.

[85]  Sergey E. Koposov,et al.  The Gaia -ESO Survey: Chemical signatures of rocky accretion in a young solar-type star , 2015, 1509.00933.

[86]  P. Nissen High-precision abundances of elements in solar twin stars - Trends with stellar age and elemental condensation temperature , 2015, 1504.07598.

[87]  A. Goodman,et al.  PROSPECTS FOR CHEMICALLY TAGGING STARS IN THE GALAXY , 2015, 1504.03327.

[88]  Jonathan C. Bird,et al.  CHEMICAL CARTOGRAPHY WITH APOGEE: METALLICITY DISTRIBUTION FUNCTIONS AND THE CHEMICAL STRUCTURE OF THE MILKY WAY DISK , 2015, 1503.02110.

[89]  U. Munari,et al.  The GALAH survey: scientific motivation , 2015, Monthly Notices of the Royal Astronomical Society.

[90]  Jason L. Sanders,et al.  Extended distribution functions for our Galaxy , 2015, 1501.02227.

[91]  J. Bovy galpy: A python LIBRARY FOR GALACTIC DYNAMICS , 2014, 1412.3451.

[92]  M. Lehnert,et al.  Reconstructing the star formation history of the Milky Way disc(s) from chemical abundances , 2014, 1410.3829.

[93]  V. Adibekyan,et al.  The Gaia-ESO survey: metallicity of the chamaeleon i star-forming region , 2014, 1406.2548.

[94]  C. D. Laney,et al.  On the fine structure of the Cepheid metallicity gradient in the Galactic thin disk , 2014, 1403.6128.

[95]  M. Wiescher,et al.  GALACTIC CHEMICAL EVOLUTION AND SOLAR s-PROCESS ABUNDANCES: DEPENDENCE ON THE 13C-POCKET STRUCTURE , 2014, 1403.1764.

[96]  C. Chiappini,et al.  Chemodynamical evolution of the Milky Way disk II: Variations with Galactic radius and height above the disk plane , 2014, 1401.5796.

[97]  T. Beers,et al.  CHEMICAL CARTOGRAPHY WITH APOGEE: LARGE-SCALE MEAN METALLICITY MAPS OF THE MILKY WAY DISK , 2013, 1311.4569.

[98]  N. V. Kharchenko,et al.  Global survey of star clusters in the Milky Way II. The catalogue of basic parameters , 2013, 1308.5822.

[99]  T. Beers,et al.  THE OPEN CLUSTER CHEMICAL ANALYSIS AND MAPPING SURVEY: LOCAL GALACTIC METALLICITY GRADIENT WITH APOGEE USING SDSS DR10 , 2013, 1308.4195.

[100]  M. Lehnert,et al.  The age structure of stellar populations in the solar vicinity Clues of a two-phase formation history of the Milky Way disk , 2013, 1305.4663.

[101]  Paul M. Brunet,et al.  The Gaia mission , 2013, 1303.0303.

[102]  M. Fujii,et al.  Destruction of star clusters due to the radial migration in spiral galaxies , 2012, 1208.3846.

[103]  C. Chiappini,et al.  Chemodynamical evolution of the Milky Way disk - I. The solar vicinity , 2012, 1208.1506.

[104]  Yong-Heng Zhao,et al.  LAMOST spectral survey — An overview , 2012 .

[105]  B. Carney,et al.  ELEMENTAL ABUNDANCE RATIOS IN STARS OF THE OUTER GALACTIC DISK. IV. A NEW SAMPLE OF OPEN CLUSTERS , 2012, 1206.6931.

[106]  S. Rosswog,et al.  On the astrophysical robustness of the neutron star merger r-process , 2012, 1206.2379.

[107]  R. Gratton,et al.  The chemical composition of nearby young associations: S-process element abundances in AB Doradus, Carina-Near and Ursa Major , 2012, 1204.2635.

[108]  G. Carraro,et al.  The origin and orbit of the old, metal-rich, open cluster NGC 6791 - Insights from kinematics , 2012, 1203.0546.

[109]  Yuan-Sen Ting,et al.  Principal component analysis on chemical abundances spaces , 2011, 1112.3207.

[110]  V. Debattista,et al.  Radial migration in disc galaxies — I. Transient spiral structure and dynamics , 2011, 1110.4413.

[111]  Italy,et al.  Chemical abundance analysis of the open clusters Berkeley 32, NGC 752, Hyades, and Praesepe , 2011, 1107.2242.

[112]  K. Kratz,et al.  What are the astrophysical sites for the r-process and the production of heavy elements? , 2011 .

[113]  L. Casagrande,et al.  New constraints on the chemical evolution of the solar neighbourhood and galactic disc(s) - improved astrophysical parameters for the Geneva-Copenhagen Survey , 2011, 1103.4651.

[114]  K. Biazzo,et al.  Elemental abundances of low-mass stars in the young clusters 25 Ori and lambda Ori , 2011, 1103.3170.

[115]  K. Biazzo,et al.  Chemical composition of the Taurus-Auriga association , 2010, 1012.0848.

[116]  Italy.,et al.  Chemical pattern across the young associations ONC and OB1b , 2010, 1010.1658.

[117]  Ken Freeman,et al.  THE LONG-TERM EVOLUTION OF THE GALACTIC DISK TRACED BY DISSOLVING STAR CLUSTERS , 2010, 1002.4357.

[118]  W. Dehnen,et al.  Local kinematics and the local standard of rest , 2009, 0912.3693.

[119]  E. Schilbach,et al.  Integrated BVJHK$_{\sf s}$ parameters and luminosity functions of 650 Galactic open clusters , 2009 .

[120]  Italy.,et al.  Chemical evolution of local galaxies in a hierarchical model , 2009, 0907.3729.

[121]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[122]  P. François,et al.  On the metallicity gradient of the Galactic disk , 2009, 0906.3140.

[123]  V. D’Orazi,et al.  Metallicity of low-mass stars in Orion , 2009, 0905.1840.

[124]  C. Deliyannis,et al.  ABUNDANCES IN TURNOFF STARS IN THE OLD, METAL-RICH OPEN CLUSTER, NGC 6791 , 2009, 0903.1648.

[125]  Laura Magrini,et al.  The evolution of the Galactic metallicity gradient from high-resolution spectroscopy of open clusters , 2008, 0812.0854.

[126]  James Binney,et al.  Chemical evolution with radial mixing , 2008, 0809.3006.

[127]  G. Stinson,et al.  Riding the Spiral Waves: Implications of Stellar Migration for the Properties of Galactic Disks , 2008, 0808.0206.

[128]  M. Ruffert,et al.  r-Process Nucleosynthesis in Hot Accretion Disk Flows from Black Hole-Neutron Star Mergers , 2008, 0803.1785.

[129]  Robert Barkhouser,et al.  The Apache Point Observatory Galactic Evolution Experiment (APOGEE) , 2007, Astronomical Telescopes + Instrumentation.

[130]  Amsterdam,et al.  The effect of spiral arm passages on the evolution of stellar clusters , 2007, astro-ph/0701136.

[131]  K. Nomoto,et al.  Galactic Chemical Evolution: Carbon through Zinc , 2006, astro-ph/0608688.

[132]  D. James,et al.  Fundamental properties of pre-main sequence stars in young, southern star forming regions: metallicities , 2005, astro-ph/0510596.

[133]  W. Dias,et al.  Direct Determination of the Spiral Pattern Rotation Speed of the Galaxy , 2005, astro-ph/0503083.

[134]  Francesco Palla,et al.  The Formation of Stars , 2005 .

[135]  Garching,et al.  The age of the oldest Open Clusters , 2003, astro-ph/0310363.

[136]  D. Argast,et al.  Neutron star mergers versus core-collapse supernovae as dominant r-process sites in the early Galaxy , 2003, astro-ph/0309237.

[137]  Nathan D. Miller,et al.  Metallicities of Old Open Clusters , 2002 .

[138]  K. Freeman,et al.  The New Galaxy: Signatures of Its Formation , 2002, astro-ph/0208106.

[139]  J. Binney,et al.  Radial mixing in galactic discs , 2002, astro-ph/0203510.

[140]  N. Prantzos,et al.  Chemo-spectrophotometric evolution of spiral galaxies – II. Main properties of present-day disc galaxies , 1999, astro-ph/9909120.

[141]  C. Chiappini,et al.  The Chemical Evolution of the Galaxy: The Two-Infall Model , 1996, astro-ph/9609199.

[142]  S. Woosley,et al.  Galacti chemical evolution: Hygrogen through zinc , 1994, astro-ph/9411003.

[143]  K. Cunha,et al.  Chemical evolution of the Orion association. II. The carbon, nitrogen, oxygen, silicon, and iron abundances of main-sequence B stars , 1994 .

[144]  K. Janes Evidence for an abundance gradient in the galactic disk , 1979 .

[145]  D. A. García-Hernández,et al.  The 16th Data Release of the Sloan Digital Sky Surveys: First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra , 2020 .

[146]  E. D. Friel,et al.  The Old Open Clusters of the Milky Way , 1995 .

[147]  K. Cunha,et al.  Chemical evolution of the orion association. I. The oxygen abundance of main-sequence B stars , 1992 .

[148]  C. Loore,et al.  The Formation of Stars , 1992 .