The MAGPI Survey: impact of environment on the total internal mass distribution of galaxies in the last 5 Gyr

We investigate the impact of environment on the internal mass distribution of galaxies using the Middle Ages Galaxy Properties with Integral field spectroscopy (MAGPI) survey. We use 2D resolved stellar kinematics to construct Jeans dynamical models for galaxies at mean redshift z ∼ 0.3, corresponding to a lookback time of 3–4 Gyr. The internal mass distribution for each galaxy is parametrized by the combined mass density slope γ (baryons + dark matter), which is the logarithmic change of density with radius. We use a MAGPI sample of 28 galaxies from low-to-mid density environments and compare to density slopes derived from galaxies in the high density Frontier Fields clusters in the redshift range 0.29 < z < 0.55, corresponding to a lookback time of ∼5 Gyr. We find a median density slope of γ = −2.22 ± 0.05 for the MAGPI sample, which is significantly steeper than the Frontier Fields median slope (γ = −2.00 ± 0.04), implying the cluster galaxies are less centrally concentrated in their mass distribution than MAGPI galaxies. We also compare to the distribution of density slopes from galaxies in ATLAS3D at z ∼ 0, because the sample probes a similar environmental range as MAGPI. The ATLAS3D median total slope is γ = −2.25 ± 0.02, consistent with the MAGPI median. Our results indicate environment plays a role in the internal mass distribution of galaxies, with no evolution of the slope in the last 3–4 Gyr. These results are in agreement with the predictions of cosmological simulations.

[1]  M. Meneghetti,et al.  New high-precision strong lensing modeling of Abell 2744. Preparing for JWST observations , 2022, Astronomy &amp; Astrophysics.

[2]  M. Ntampaka,et al.  The dynamical mass of the Coma cluster from deep learning , 2022, Nature Astronomy.

[3]  R. Massey,et al.  Pilot-WINGS: An extended MUSE view of the structure of Abell 370 , 2022, 2202.04663.

[4]  P. Salucci,et al.  Observational evidence of evolving dark matter profiles since z 1 , 2021, Astronomy & Astrophysics.

[5]  A. Boselli,et al.  Ram pressure stripping in high-density environments , 2021, The Astronomy and Astrophysics Review.

[6]  E. Emsellem,et al.  Total mass density slopes of early-type galaxies using Jeans dynamical modelling at redshifts 0.29 < z < 0.55 , 2021, Monthly Notices of the Royal Astronomical Society.

[7]  A. D. Feinstein,et al.  Extending the evolution of the stellar mass–size relation at z ≤ 2 to low stellar mass galaxies from HFF and CANDELS , 2021, Monthly Notices of the Royal Astronomical Society.

[8]  T. Yuan,et al.  The MAGPI survey: Science goals, design, observing strategy, early results and theoretical framework , 2020, Publications Astronomical Society of Australia.

[9]  Gemini,et al.  The data processing pipeline for the MUSE instrument , 2020, Astronomy & Astrophysics.

[10]  S. Driver,et al.  Galaxy And Mass Assembly (GAMA): assimilation of KiDS into the GAMA database , 2020, Monthly Notices of the Royal Astronomical Society.

[11]  V. Springel,et al.  Early-type galaxy density profiles from IllustrisTNG – II. Evolutionary trend of the total density profile , 2019, Monthly Notices of the Royal Astronomical Society.

[12]  J. Brownstein,et al.  SDSS-IV MaNGA: the inner density slopes of nearby galaxies , 2019, Monthly Notices of the Royal Astronomical Society.

[13]  C. Willmer,et al.  Galaxy Merger Fractions in Two Clusters at Using the Hubble Space Telescope , 2019, The Astrophysical Journal.

[14]  V. Springel,et al.  Early-type galaxy density profiles from IllustrisTNG – I. Galaxy correlations and the impact of baryons , 2018, Monthly Notices of the Royal Astronomical Society.

[15]  Y. Shu,et al.  Strong-lensing measurement of the total-mass-density profile out to three effective radii for z ∼ 0.5 early-type galaxies , 2018, Monthly Notices of the Royal Astronomical Society.

[16]  R. McDermid,et al.  The SLUGGS survey: A comparison of total-mass profiles of early-type galaxies from observations and cosmological simulations, to ~4 effective radii , 2018, 1803.02373.

[17]  S. Driver,et al.  ProFound : source extraction and application to modern survey data , 2018, 1802.00937.

[18]  L. Cortese,et al.  Abell 1367: a high fraction of late-type galaxies displaying HI morphological and kinematic perturbations , 2018, 1801.03601.

[19]  M. Auger,et al.  Dark matter contraction and stellar-mass-to-light ratio gradients in massive early-type galaxies , 2018, 1801.01887.

[20]  T. Davis,et al.  The connection between mass, environment, and slow rotation in simulated galaxies , 2017, 1712.01398.

[21]  Daniel Foreman-Mackey,et al.  Data Analysis Recipes: Using Markov Chain Monte Carlo , 2017, 1710.06068.

[22]  V. Springel,et al.  Supermassive black holes and their feedback effects in the IllustrisTNG simulation , 2017, Monthly Notices of the Royal Astronomical Society.

[23]  A. Biviano,et al.  GASP. I. Gas Stripping Phenomena in Galaxies with MUSE , 2017, 1704.05086.

[24]  Annalisa Pillepich,et al.  Simulating galaxy formation with the IllustrisTNG model , 2017, 1703.02970.

[25]  A. Hopkins,et al.  Galaxy and Mass Assembly (GAMA): formation and growth of elliptical galaxies in the group environment , 2017, 1702.07641.

[26]  M. Cappellari,et al.  Systematic trends in total mass profiles from dynamical models of early-type galaxies , 2016, 1612.05805.

[27]  Heidelberg,et al.  Abell 2744 : too much substructure for ΛCDM? , 2016, 1611.02790.

[28]  Rory J. E. Smith,et al.  THE PREFERENTIAL TIDAL STRIPPING OF DARK MATTER VERSUS STARS IN GALAXIES , 2016, 1610.04264.

[29]  R. Smith,et al.  Abundance ratios and IMF slopes in the dwarf elliptical galaxy NGC 1396 with MUSE , 2016, 1608.07042.

[30]  S. Allen,et al.  Witnessing the growth of the nearest galaxy cluster , 2016, 1704.01236.

[31]  M. Cappellari Improving the full spectrum fitting method: accurate convolution with Gauss-Hermite functions , 2016, 1607.08538.

[32]  R. Massey,et al.  The extraordinary amount of substructure in the Hubble Frontier Fields cluster Abell 2744 , 2016, 1606.04527.

[33]  J. Anderson,et al.  The Frontier Fields: Survey Design and Initial Results , 2016, 1605.06567.

[34]  M. Cappellari,et al.  Linear relation between H i circular velocity and stellar velocity dispersion in early-type galaxies, and slope of the density profiles , 2016, 1604.07902.

[35]  Andreas Burkert,et al.  The co-evolution of total density profiles and central dark matter fractions in simulated early-type galaxies , 2016, 1603.01619.

[36]  Simon J. Lilly,et al.  ZAP -- Enhanced PCA Sky Subtraction for Integral Field Spectroscopy , 2016, 1602.08037.

[37]  R. Kotulla,et al.  On the occurrence of galaxy harassment , 2015, 1503.01965.

[38]  F. Castander,et al.  The ALHAMBRA survey: accurate merger fractions derived by PDF analysis of photometrically close pairs , 2014, 1409.1142.

[39]  I. Trujillo,et al.  The effect of the environment on the stellar mass–size relationship for present-day galaxies , 2014, 1404.7135.

[40]  J. Cardoso,et al.  Dancing in the dark: galactic properties trace spin swings along the cosmic web , 2014, 1402.1165.

[41]  Andreas Burkert,et al.  Cosmological simulations of black hole growth: AGN luminosities and downsizing , 2013, 1308.0333.

[42]  G. Fasano,et al.  The impact of global environment on galaxy mass functions at low redshift , 2013, 1304.3124.

[43]  S. Seitz,et al.  Weak lensing analysis of RXC J2248.7−4431 , 2013, 1304.0764.

[44]  K. Alatalo,et al.  The ATLAS3D project – XXI. Correlations between gradients of local escape velocity and stellar populations in early-type galaxies , 2012, 1211.4615.

[45]  T. Lauer,et al.  A magnified young galaxy from about 500 million years after the Big Bang , 2012, Nature.

[46]  Timothy A. Davis,et al.  The ATLAS3D project XV: benchmark for early-type galaxies scaling relations from 260 dynamical models: mass-to-light ratio, dark matter, fundamental plane and mass plane , 2012, 1208.3522.

[47]  K. Alatalo,et al.  The ATLAS3D project – XX. Mass–size and mass–σ distributions of early-type galaxies: bulge fraction drives kinematics, mass-to-light ratio, molecular gas fraction and stellar initial mass function , 2012, 1208.3523.

[48]  J. Ostriker,et al.  How do minor mergers promote inside-out growth of ellipticals, transforming the size, density profile and dark matter fraction? , 2012, 1206.5004.

[49]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[50]  A. Hopkins,et al.  The Sydney-AAO Multi-object Integral field spectrograph , 2011, 1112.3367.

[51]  A. Mann,et al.  X-ray–optical classification of cluster mergers and the evolution of the cluster merger fraction , 2011, 1111.2396.

[52]  R. Teyssier,et al.  Self-regulated growth of supermassive black holes by a dual jet-heating active galactic nucleus feedback mechanism: methods, tests and implications for cosmological simulations , 2011, Monthly Notices of the Royal Astronomical Society.

[53]  F. Marulli,et al.  Size evolution of spheroids in a hierarchical Universe , 2011, 1105.6043.

[54]  R. Bender,et al.  Dynamical masses of early-type galaxies: a comparison to lensing results and implications for the stellar IMF and the distribution of dark matter , 2011, 1103.3414.

[55]  J. Rhodes,et al.  Creation of cosmic structure in the complex galaxy cluster merger Abell 2744 , 2011, 1103.2772.

[56]  Timothy A. Davis,et al.  The ATLAS3D project – III. A census of the stellar angular momentum within the effective radius of early‐type galaxies: unveiling the distribution of fast and slow rotators , 2011, 1102.4444.

[57]  U. Utah,et al.  Two-dimensional kinematics of SLACS lenses – III. Mass structure and dynamics of early-type lens galaxies beyond z ≃ 0.1 , 2011, 1102.2261.

[58]  R. Davies,et al.  The ATLAS3D project – I. A volume-limited sample of 260 nearby early-type galaxies: science goals and selection criteria , 2010, 1012.1551.

[59]  C. Conselice,et al.  How does galaxy environment matter? The relationship between galaxy environments, colour and stellar mass at 0.4 < z < 1 in the Palomar/DEEP2 survey , 2010, 1009.3189.

[60]  S. Bamford,et al.  Galaxy and Mass Assembly (GAMA): survey diagnostics and core data release , 2010, 1009.0614.

[61]  A. J. Cenarro,et al.  Evolutionary stellar population synthesis with MILES – I. The base models and a new line index system , 2010, 1004.4439.

[62]  Oxford,et al.  The environmental dependence of the stellar-mass-size relation in STAGES galaxies , 2009, 0910.5665.

[63]  J. Kneib,et al.  Abell 370 revisited: refurbished Hubble imaging of the first strong lensing cluster , 2009, 0910.5553.

[64]  S. Borgani,et al.  Simulating the effect of active galactic nuclei feedback on the metal enrichment of galaxy clusters , 2009, 0909.0664.

[65]  V. Springel E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh , 2009, 0901.4107.

[66]  Michele Cappellari,et al.  Measuring the inclination and mass-to-light ratio of axisymmetric galaxies via anisotropic Jeans models of stellar kinematics , 2008, 0806.0042.

[67]  E. Emsellem,et al.  The SAURON project – X. The orbital anisotropy of elliptical and lenticular galaxies: revisiting the (V/σ, ɛ) diagram with integral‐field stellar kinematics , 2007, astro-ph/0703533.

[68]  S. Maddox,et al.  zCOSMOS: A Large VLT/VIMOS Redshift Survey Covering 0 < z < 3 in the COSMOS Field , 2006, astro-ph/0612291.

[69]  J. Kneib,et al.  Truncation of galaxy dark matter halos in high density environments , 2006, astro-ph/0609782.

[70]  V. Avila-Reese,et al.  The Dependence of the Mass Assembly History of Cold Dark Matter Halos on Environment , 2006, astro-ph/0606360.

[71]  UCLA,et al.  The Sloan Lens ACS Survey. I. A Large Spectroscopically Selected Sample of Massive Early-Type Lens Galaxies , 2005, astro-ph/0511453.

[72]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[73]  T. D. Matteo,et al.  Modelling feedback from stars and black holes in galaxy mergers , 2004, astro-ph/0411108.

[74]  Harinder P. Singh,et al.  The Indo-US Library of Coudé Feed Stellar Spectra , 2004, astro-ph/0402435.

[75]  Eric Emsellem,et al.  Parametric Recovery of Line‐of‐Sight Velocity Distributions from Absorption‐Line Spectra of Galaxies via Penalized Likelihood , 2003, astro-ph/0312201.

[76]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[77]  Michele Cappellari,et al.  Adaptive spatial binning of integral-field spectroscopic data using Voronoi tessellations , 2003, astro-ph/0302262.

[78]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: a hybrid multiphase model for star formation , 2002, astro-ph/0206393.

[79]  M. Cappellari Efficient multi-Gaussian expansion of galaxies , 2002, astro-ph/0201430.

[80]  R. Teyssier c ○ ESO 2002 Astronomy Astrophysics , 2002 .

[81]  H. Böhringer,et al.  The Mass Function of an X-Ray Flux-limited Sample of Galaxy Clusters , 1999, astro-ph/0111285.

[82]  Denis Foo Kune,et al.  Starburst99: Synthesis Models for Galaxies with Active Star Formation , 1999, astro-ph/9902334.

[83]  S. Allen Resolving the discrepancy between X-ray and gravitational lensing mass measurements for clusters of galaxies , 1997, astro-ph/9710217.

[84]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[85]  Remington P. S. Stone,et al.  Spectrophotometry of Flux Calibration Stars for Hubble Space Telescope , 1996 .

[86]  G. Lake,et al.  Galaxy harassment and the evolution of clusters of galaxies , 1995, Nature.

[87]  M. Schwarzschild,et al.  A numerical model for a triaxial stellar system in dynamical equilibrium , 1979 .

[88]  J. Jeans The Motions of Stars in a Kapteyn-Universe , 1922 .

[89]  Norbert Hubin,et al.  Adaptive Optics Systems II , 2010 .

[90]  Carl J. Grillmair,et al.  The Centers of Early-Type Galaxies with HST.I.An Observational Survey , 1995 .

[91]  C. Jones,et al.  The structure of clusters of galaxies observed with Einstein , 1984 .

[92]  J. Gunn,et al.  On the Infall of Matter into Clusters of Galaxies and Some Effects on Their Evolution , 1972 .

[93]  E. Salpeter The Luminosity function and stellar evolution , 1955 .