High‐energy femtosecond fiber lasers based on pulse propagation at normal dispersion

The generation and stable propagation of ultrashort optical pulses tend to be limited by accumulation of excessive nonlinear phase shifts. The limitations are particularly challenging in fiber-based devices, and as a result, short-pulse fiber lasers have lagged behind bulk solid-state lasers in performance. This article will review several new modes of pulse formation and propagation in fiber lasers. These modes exist with large normal cavity dispersion, and so are qualitatively distinct from the soliton-like processes that have been exploited effectively in modern femtosecond lasers but which are also quite limiting. Self-similar evolution can stabilize high-energy pulses in fiber lasers, and this leads to order-of-magnitude increases in performance: fiber lasers that generate 10 nJ pulses of 100 fs duration are now possible. Pulse-shaping based on spectral filtering of a phase-modulated pulse yields similar performance, from lasers that have no intracavity dispersion control. These new modes feature highly-chirped pulses in the laser cavity, and a theoretical framework offers the possibility of unifying our view of normal-dispersion femtosecond lasers. Instruments based on these new pulse-shaping mechanisms offer performance that is comparable to that of solid-state lasers but with the major practical advantages of fiber.

[1]  D. E. Spence,et al.  60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. , 1991, Optics letters.

[2]  L. Nelson,et al.  Efficient frequency doubling of a femtosecond fiber laser. , 1996, Optics letters.

[3]  F. Wise,et al.  Self-similar evolution of parabolic pulses in a laser. , 2004, Physical review letters.

[4]  Henry C. Kapteyn,et al.  GENERATION OF COHERENT SOFT X RAYS AT 2.7 NM USING HIGH HARMONICS , 1997 .

[5]  U. Keller Recent developments in compact ultrafast lasers , 2003, Nature.

[6]  B C Thomsen,et al.  Self-similar propagation and amplification of parabolic pulses in optical fibers. , 2000, Physical review letters.

[7]  H. Haus,et al.  Models for self-limited additive pulse mode-locking , 1995 .

[8]  J. Limpert,et al.  Self-starting self-similar all-polarization maintaining Yb-doped fiber laser. , 2005, Optics Express.

[9]  M. Nakazawa,et al.  Pulse compression by nonlinear pulse evolution with reduced optical wave breaking in erbium-doped fiber amplifiers. , 1996, Optics letters.

[10]  Daniel R. Grischkowsky,et al.  Optical pulse compression based on enhanced frequency chirping , 1982 .

[11]  D. Tang,et al.  Gain-guided soliton in a positive group-dispersion fiber laser. , 2006, Optics letters.

[12]  David J. Richardson,et al.  320 fs soliton generation with passively mode-locked erbium fibre laser , 1991 .

[13]  Andy Chong,et al.  All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ. , 2007, Optics letters.

[14]  Hall,et al.  Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis , 2000, Science.

[15]  A. Peacock,et al.  Exact self-similar solutions of the generalized nonlinear Schrödinger equation with distributed coefficients. , 2003, Physical review letters.

[16]  M. Murnane,et al.  Phase-matched generation of coherent soft X-rays , 1998, Science.

[17]  J. Gordon,et al.  Negative dispersion using pairs of prisms. , 1984, Optics letters.

[18]  U. Heinzmann,et al.  Attosecond metrology , 2007, Nature.

[19]  F. Wise,et al.  Femtosecond fiber lasers with pulse energies above 10 nJ. , 2005, Optics letters.

[20]  M. H. Ober,et al.  Characterization of ultrashort pulse formation in passively mode-locked fiber lasers , 1992 .

[21]  D. Richardson,et al.  Power scaling in passively mode-locked large-mode area fiber lasers , 1998, IEEE Photonics Technology Letters.

[22]  Frank W. Wise,et al.  Stabilization of high-energy femtosecond ytterbium fiber lasers by use of a frequency filter , 2007 .

[23]  U. Keller,et al.  60-fs pulses from a diode-pumped Nd:glass laser. , 1997, Optics letters.

[24]  A. Ruehl,et al.  Similariton fiber laser with a hollow-core photonic bandgap fiber for dispersion control. , 2007, Optics letters.

[25]  Almantas Galvanauskas,et al.  Ultrafast pulse sources based on multi-mode optical fibers , 2000 .

[26]  M. Fermann,et al.  42-fs pulse generation from a mode-locked fiber laser started with a moving mirror. , 1993, Optics letters.

[27]  A Poppe,et al.  Chirped-pulse oscillators: a route to high-power femtosecond pulses without external amplification. , 2004, Optics letters.

[28]  Carsten Fallnich,et al.  0.7W all-fiber Erbium oscillator generating 64 fs wave breaking-free pulses. , 2005, Optics express.

[29]  F. Wise,et al.  Characterization of a Kerr-lens mode-locked Ti:sapphire laser with positive group-velocity dispersion. , 1993, Optics letters.

[30]  Ursula Keller,et al.  Mode-locking with slow and fast saturable absorbers-what's the difference? , 1998 .

[31]  R. J. Kruhlak,et al.  Solitary pulse propagation in high gain optical fiber amplifiers with normal group velocity dispersion , 2002 .

[32]  U. Heinzmann,et al.  Time-resolved atomic inner-shell spectroscopy , 2002, Nature.

[33]  I. Duling All-fiber ring soliton laser mode locked with a nonlinear mirror. , 1991, Optics letters.

[34]  Anna C. Peacock,et al.  Self-similar propagation of parabolic pulses in normal-dispersion fiber amplifiers , 2002 .

[35]  Frank W. Wise,et al.  Properties of normal-dispersion femtosecond fiber lasers , 2008 .

[36]  Alexander Apolonski,et al.  Chirped-pulse oscillators: theory and experiment , 2006 .

[37]  Charles K. Rhodes,et al.  Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases , 1987 .

[38]  L. A. Lompré,et al.  Multiple-harmonic conversion of 1064 nm radiation in rare gases , 1988 .

[39]  Jens Limpert,et al.  Controlling the influence of SPM in fiber-based chirped-pulse amplification systems by using an actively shaped parabolic spectrum. , 2007, Optics express.

[40]  A. Galvanauskas,et al.  Fiber-lasers for ultrafast optics , 1997 .

[41]  Ferenc Krausz,et al.  Generation of Coherent X-rays in the Water Window Using 5-Femtosecond Laser Pulses , 1997 .

[42]  Ahmed H. Zewail,et al.  Femtochemistry: Recent Progress in Studies of Dynamics and Control of Reactions and Their Transition States , 1996 .

[43]  J. Limpert,et al.  Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier. , 2004, Optics express.

[44]  S. Kelly,et al.  Characteristic sideband instability of periodically amplified average soliton , 1992 .

[45]  Patrick Georges,et al.  Laser crystals for the production of ultra-short laser pulses , 2003 .

[46]  G. Millot,et al.  Self-similarity in ultrafast nonlinear optics , 2007 .

[47]  M M Fejer,et al.  Frequency doubling of femtosecond erbium-fiber soliton lasers in periodically poled lithium niobate. , 1997, Optics letters.

[48]  D. E. Spence,et al.  Femtosecond pulse generation by a dispersion-compensated, coupled-cavity, mode-locked Ti:sapphire laser , 1991 .

[49]  M. Ibsen,et al.  High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm , 2006, IEEE Photonics Technology Letters.

[50]  J. Limpert,et al.  Influence of pulse shape in self-phase-modulation-limited chirped pulse fiber amplifier systems , 2007 .

[51]  Almantas Galvanauskas,et al.  Mode-scalable fiber-based chirped pulse amplification systems , 2001 .

[52]  I. Duling Dispersion in rare-earth-doped fibers. , 1991 .

[53]  Jens Limpert,et al.  High-power all-normal-dispersion femtosecond pulse generation from a Yb-doped large-mode-area microstructure fiber laser. , 2007, Optics letters.

[54]  Hermann A. Haus,et al.  The Parametric Soliton Laser with Low Pedestal , 1989 .

[55]  J. Harvey,et al.  Self-similar propagation of high-power parabolic pulses in optical fiber amplifiers. , 2000, Optics letters.

[56]  H. Haus,et al.  77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser. , 1993, Optics letters.

[57]  Magnus Karlsson,et al.  Wave-breaking-free pulses in nonlinear-optical fibers , 1993 .

[58]  N. J. Smith,et al.  Soliton transmission using periodic dispersion compensation , 1997 .

[59]  U. Kleineberg,et al.  Steering Attosecond Electron Wave Packets with Light , 2002, Science.

[60]  J. Fujimoto,et al.  Structures for additive pulse mode locking , 1991 .

[61]  J. Limpert,et al.  High-energy femtosecond Yb-doped dispersion compensation free fiber laser. , 2007, Optics express.

[62]  F. Wise,et al.  Control of dispersion in a femtosecond ytterbium laser by use of hollow-core photonic bandgap fiber. , 2004, Optics express.

[63]  R. Holzwarth,et al.  Attosecond control of electronic processes by intense light fields , 2003, Nature.

[64]  Frank W. Wise,et al.  Generation of 50-fs, 5-nJ pulses at 1.03 μm from a wave-breaking-free fiber laser , 2003 .

[65]  U. Keller,et al.  Efficient and tunable diode-pumped femtosecond Yb:glass lasers. , 1998, Optics letters.