Effect of tungsten crystallographic orientation on He-ion-induced surface morphology changes

[1]  N. Ohno,et al.  Influence of crystal orientation on damages of tungsten exposed to helium plasma , 2013 .

[2]  Brian D. Wirth,et al.  Tungsten surface evolution by helium bubble nucleation, growth and rupture , 2013 .

[3]  F. Meyer,et al.  A large-acceptance beam-deceleration module for retrofitting into ion-source beam lines. , 2013, The Review of scientific instruments.

[4]  J. Michael,et al.  Comparison of Channeling Contrast between Ion and Electron Images , 2013, Microscopy and Microanalysis.

[5]  H. Kurishita,et al.  Helium bubble formation on tungsten in dependence of fabrication method , 2011 .

[6]  R. Doerner,et al.  Nanostructure formation on tungsten exposed to low-pressure rf helium plasmas: A study of ion energy threshold and early stage growth , 2011 .

[7]  J. Michael Focused Ion Beam Induced Microstructural Alterations: Texture Development, Grain Growth, and Intermetallic Formation , 2011, Microscopy and Microanalysis.

[8]  P. R. Harris,et al.  Recent Activities at the ORNL Multicharged Ion Research Facility (MIRF) , 2011 .

[9]  R. Doerner,et al.  Formation of helium induced nanostructure ‘fuzz’ on various tungsten grades , 2010 .

[10]  J. Michael,et al.  Risks of “Cleaning” Electron Backscatter Diffraction Data , 2010, Microscopy Today.

[11]  R. Doerner,et al.  Helium induced nanoscopic morphology on tungsten under fusion relevant plasma conditions , 2008 .

[12]  Ye Minyou,et al.  Effects of Low Energy and High Flux Helium/Hydrogen Plasma Irradiation on Tungsten as Plasma Facing Material , 2005 .

[13]  I. Gladwell,et al.  Thermal grain boundary grooving with anisotropic surface free energies , 2004 .

[14]  F. Ma,et al.  Calculation of the surface energy of bcc metals by using the modified embedded‐atom method , 2003 .

[15]  M. Ye,et al.  Incident ion energy dependence of bubble formation on tungsten surface with low energy and high flux helium plasma irradiation , 2003 .

[16]  Lucille A. Giannuzzi,et al.  Ion channeling effects on the focused ion beam milling of Cu , 2001 .

[17]  N. Yoshida,et al.  Microstructure evolution in tungsten during low-energy helium ion irradiation , 2000 .

[18]  S. G. Wang,et al.  Surface energy of arbitrary crystal plane of bcc and fcc metals , 2000 .

[19]  G. Leichtfried,et al.  On the 45° embrittlement of tungsten sheets , 1995 .

[20]  H. Trinkaus Possible Mechanisms Limiting the Pressure in Inert Gas Bubbles in Metals , 1991 .

[21]  H. Schroeder,et al.  Inert Gas Bubble Coarsening Mechanisms , 1991 .

[22]  S. Donnelly The density and pressure of helium in bubbles in implanted metals: A critical review , 1985 .

[23]  Leonard C. Feldman,et al.  Materials analysis by ion channeling , 1982 .

[24]  J. H. Evans,et al.  Formation of helium platelets in molybdenum , 1981, Nature.

[25]  J. Evans,et al.  Direct evidence for helium bubble growth in molybdenum by the mechanism of loop punching , 1981 .

[26]  J. Evans The role of implanted gas and lateral stress in blister formation mechanisms , 1978 .

[27]  Rajinder Kumar,et al.  Surface energy anisotropy of tungsten , 1976 .

[28]  W. Brandt Channeling in Crystals , 1968 .

[29]  D. Onderdelinden THE INFLUENCE OF CHANNELING ON Cu SINGLE‐CRYSTAL SPUTTERING , 1966 .

[30]  J. Lindhard Motion of swift charged particles, as influenced by strings of atoms in crystals , 1964 .